10 research outputs found
Recommended from our members
Review and assessment of latent and sensible heat flux accuracy over the global oceans
For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25° à 0.25° grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product
Developing an Observing AirâSea Interactions Strategy (OASIS) for the global ocean
The Observing AirâSea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing airâsea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our âTheory of Changeâ relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObsâ19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile airâsea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring airâsea fluxes; and #3: improved representation of airâsea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) FindableâAccessibleâInteroperableâReusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.publishedVersio
Effects of mesoscale eddies in the active mixed layer: test of the parametrisation in eddy resolving simulations
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200â207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over â and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher () correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3â4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified -equation reveals that the effects of the vertical mixing of vorticity is responsible for the twoâthree fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed
Seaflux
High-resolution surface fluxes over the global ocean are needed to evaluate coupled atmosphereâocean models and weather forecasting models, provide surface forcing for ocean models, understand the regional and temporal variations of the exchange of heat between the atmosphere and ocean, and provide a large-scale context for field experiments. Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel, the SEAFLUX Project has been initiated to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans to complement the existing products for surface radiation fluxes and precipitation. The SEAFLUX Project includes the following elements: a library of in situ data, with collocated satellite data to be used in the evaluation and improvement of global flux products; organized intercom-parison projects, to evaluate and improve bulk flux models and determination from the satellite of the input parameters; and coordinated evaluation of the flux products in the context of applications, such as forcing ocean models and evaluation of coupled atmosphereâocean models. The objective of this paper is to present an overview of the status of global ocean surface flux products, the methodology being used by SEAFLUX, and the prospects for improvement of satellite-derived flux products
Observations to Quantify Air-Sea Fluxes and Their Role in Climate Variability and Predictability
Flux products quantifying exchanges between ocean and atmosphere are needed for forcing models, understanding ocean dynamics, investigating the oceanâs role in climate, and assessing coupled models. Research experiments are essential to improve flux parameterizations, and longer research deployments are required to sample rare events. Urgently needed technological improvements include longer battery life, more robust sensors and improvement of sensors for humidity, precipitation and direct gas and particle fluxes. A range of different flux products are needed, incorporating data from ships, satellites and models in different combinations and using different methods. All products must be characterized with uncertainty estimates. Dataset validation requires high quality observations from ocean flux reference sites and from ships. The continued development of flux products from satellites provides much-needed sampling. Continual intercomparisons among products and with high quality observations will lead to improved flux datasets, while improvements to the flux data management system would facilitate these intercomparisons
Developing an Observing AirâSea Interactions Strategy (OASIS) for the global ocean
The Observing AirâSea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing airâsea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our âTheory of Changeâ relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObsâ19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile airâsea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring airâsea fluxes; and #3: improved representation of airâsea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) FindableâAccessibleâInteroperableâReusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean
One hundred years of EEG for brain and behaviour research
On the centenary of the first human EEG recording, more than 500 experts reflect on the impact that this discovery has had on our understanding of the brain and behaviour. We document their priorities and call for collective action focusing on validity, democratization and responsibility to realize the potential of EEG in science and society over the next 100 years