176 research outputs found

    Process-oriented statistical-dynamical evaluation of LM precipitation forecasts

    Get PDF
    International audienceThe objective of this study is the scale dependent evaluation of precipitation forecasts of the Lokal-Modell (LM) from the German Weather Service in relation to dynamical and cloud parameters. For this purpose the newly designed Dynamic State Index (DSI) is correlated with clouds and precipitation. The DSI quantitatively describes the deviation and relative distance from a stationary and adiabatic solution of the primitive equations. A case study and statistical analysis of clouds and precipitation demonstrates the availability of the DSI as a dynamical threshold parameter. This confirms the importance of imbalances of the atmospheric flow field, which dynamically induce the generation of rainfall

    Minimum information and guidelines for reporting a Multiplexed Assay of Variant Effect

    Full text link
    Multiplexed Assays of Variant Effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines has led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs

    Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5

    Get PDF
    While coding variants often have pleiotropic effects across multiple tissues, non-coding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we dissected the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers impact gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally-restricted effects

    Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation

    Get PDF
    Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specifc uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the frst month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confrmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life

    Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: a randomized clinical trial

    Get PDF
    Background The Mediterranean diet (MeD) plays a key role in the prevention of obesity. Among the genes involved in obesity, the Fat mass and obesity-associated gene (FTO) is one of the most known, but its interaction with MeD remained uncertain so far. Methods We carried out a study on a sample of 188 Italian subjects, analyzing their FTO rs9939609 alleles, and the difference in body composition between the baseline and a 4-weeks nutritional intervention. The sample was divided into two groups: the control group of 49 subjects, and the MeD group of 139 subjects. Results We found significant relations between MeD and both variation of total body fat (ΔTBFat) (p = 0.00) and gynoid body fat (p = 0.04). ∆TBFat (kg) demonstrated to have a significant relation with the interaction diet-gene (p = 0.04), whereas FTO was associated with the variation of total body water (p = 0.02). Conclusions MeD demonstrated to be a good nutritional treatment to reduce the body fat mass, whereas data about FTO remain uncertain. Confirming or rejecting the hypothesis of FTO and its influence on body tissues during nutritional treatments is fundamental to decide whether its effect has to be taken into consideration during both development of dietetic plans and patients monitoring. Trial Registration ClinicalTrials.gov Id: NCT01890070. Registered 01 July 2013, https://clinicaltrials.gov/ct2/show/NCT0189007

    A MicroRNA Linking Human Positive Selection and Metabolic Disorders

    Get PDF
    Postponed access: the file will be accessible after 2021-10-14Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.acceptedVersio

    Prospective functional classification of all possible missense variants in PPARG.

    Get PDF
    Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (1K08DK102877-01, to A.R.M.; 1R01DK097768-01, to D.A.), NIH/Harvard Catalyst (1KL2TR001100-01, to A.R.M.), the Broad Institute (SPARC award, to A.R.M. and T.M.), and the Wellcome Trust (095564, to K.C.; 107064, to D.B.S.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.370

    Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits

    Get PDF
    The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm
    corecore