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ARTICLE

Integrative analysis of omics summary data reveals
putative mechanisms underlying complex traits
Yang Wu1, Jian Zeng 1, Futao Zhang1, Zhihong Zhu1, Ting Qi1, Zhili Zheng1,2, Luke R. Lloyd-Jones1,

Riccardo E. Marioni3,4, Nicholas G. Martin5, Grant W. Montgomery 1, Ian J. Deary4, Naomi R. Wray 1,6,

Peter M. Visscher 1,6, Allan F. McRae1 & Jian Yang 1,6

The identification of genes and regulatory elements underlying the associations discovered

by GWAS is essential to understanding the aetiology of complex traits (including diseases).

Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at

GWAS loci for follow-up functional studies. We perform an integrative analysis that uses

summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites

associated with gene expression and phenotype through shared genetic effects (i.e., pleio-

tropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes.

These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped

to distal genes. Further pleiotropic association analyses, which link both the methylome and

transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a

plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by

genetic regulation of transcription through DNAm.
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Genome-wide association studies (GWAS) have identified
thousands of genetic variants associated with complex
traits (including diseases)1,2. Given the polygenic nature

of most complex traits3, more variants are expected to be dis-
covered in the foreseeable near future because of the rapid
increase in sample size (due to large cohorts such as UK Biobank4

and consortia efforts). However, the mechanisms underlying the
associations remain largely unaddressed5. This is because the
mapping resolution of GWAS is limited by the complicated
linkage disequilibrium (LD) structure of the genome (i.e., the top
associated variant at a locus is often not the causal variant)6,7 and
by the sampling variation in statistical tests due to finite sample
sizes. Furthermore, genetic variants can affect phenotype through
distal regulation of gene expression (i.e., the nearest gene to the
GWAS top signal is often not the causal gene)7–9. High-
throughput methods such as massively parallel reporter assay10,
self-transcribing active regulatory region sequencing (STARR-
seq)11, and CRISPR-Cas9 epigenome screens12 have been devel-
oped to identify the causal variants and functional elements
regulating gene expression. However, it remains challenging to
pinpoint the gene(s) responsible for the association signal at a
GWAS locus8,13,14. Thus, analytical approaches that somehow
mimic a functional study in silico are needed to prioritize plau-
sible functional genes and/or regulatory elements at GWAS loci
for further studies.

Given that the complex trait-associated variants are pre-
dominantly found in noncoding regions7,15, it is reasonable to
assume that these variants affect phenotype through genetic
regulation of transcriptional output. To test whether the effect of
a genetic variant on a phenotype is mediated by transcription, we
have developed powerful and flexible approaches, SMR (sum-
mary-data-based Mendelian randomization) and HEIDI (het-
erogeneity in dependent instruments) tests9, and have
implemented them in an efficient software tool for genome-wide
analysis (URLs). The SMR & HEIDI approach uses summary-
level data from GWAS and expression quantitative trait locus
(eQTL) studies to test if a transcript and phenotype are associated
because of a shared causal variant (i.e., pleiotropy). Compared
with most other methods for an integrative analysis of GWAS
and eQTL data16–18, the SMR & HEIDI approach features the
ability to distinguish a pleiotropic model (i.e., gene expression
and phenotype are associated owing to a single shared genetic
variant) from a linkage model (i.e., there are two or more distant
genetic variants in LD affecting gene expression and phenotype
independently)9. Moreover, like other summary-data-based
methods16,18, the SMR & HEIDI approach allows the use of
GWAS and eQTL data from two independent studies; thus, the
statistical power can be boosted by using data from studies with
very large sample sizes.

The analytical framework that integrates GWAS and eQTL
data can be applied to incorporate other source of omics infor-
mation, e.g., DNA methylation (DNAm) at CpG sites19, which is
an important epigenetic mechanism for gene regulation20.
Methylome-wide association studies (MWAS) have identified a
number of DNAm sites associated with complex traits21–23.
However, it is not clear whether these associations are causal or
driven by confounding factors. More importantly, it is not
obvious which genes are regulated by DNAm because the reg-
ulatory elements can be distant from the target genes24. Data
from recent eQTL and methylation quantitative trait locus
(mQTL) studies25,26 provide an opportunity to incorporate
mQTL data into the SMR analysis to map DNAm to
transcripts through a shared genetic factor and to further detect
pleiotropic associations of DNAm and transcripts with pheno-
type. The chromatin activity data provided by the Roadmap
Epigenomics Mapping Consortium (REMC)27 allows us to

further annotate the DNAm sites that are associated with gene
expression.

In this study, we report an integrative analysis of summary
statistics from GWAS, eQTL and mQTL studies of the largest
sample sizes to date. We mapped 7858 DNAm sites to 2733
putative target genes in cis-regions and then linked them to 14
complex traits.

Results
Method overview. Our integrative analysis combines summary-
level multi-omics data to prioritize gene targets and their reg-
ulatory elements. It consists of three steps, each of which relies on
the SMR & HEIDI method to test for pleiotropic association9

(Fig. 1 and Supplementary Note 1). First, we map the methylome
to the transcriptome in cis-regions by testing the associations of
DNAm with their neighbouring genes (within 2Mb of each
DNAm probe) using the top associated mQTL as the instru-
mental variable (Methods). Next, we prioritize the trait-associated
genes by testing the associations of transcripts with the phenotype
using the top associated eQTL. Last, we prioritize the trait-
associated DNAm sites by testing associations of DNAm sites
with the phenotype using the top associated mQTL. If the asso-
ciation signals are significant in all three steps, then we predict
with strong confidence that the identified DNAm sites and target
genes are functionally relevant to the trait through the genetic
regulation of gene expression at the DNAm sites. The SMR &
HEIDI method assumes consistent LD between two samples. This
assumption is generally satisfied by using data from samples of
the same ancestry (Supplementary Fig. 1).

Analytical mapping of methylome to transcriptome. To identify
target genes for the DNAm sites, we applied the SMR & HEIDI
approach to test for pleiotropic associations between DNAm and
gene expression (denoted as M2T analysis) in large data sets from
peripheral blood (Methods). The summary statistics of SNPs on
gene expression were from an eQTL analysis of 38624 probes in
the CAGE (Consortium for the Architecture of Gene Expression)
28 data (n= 2765). The summary statistics of SNPs on DNAm
were from a meta-analysis of mQTL data26 from two independent
data sets: the Brisbane Systems Genetics Study (BSGS, n= 614)29

and the Lothian Birth Cohorts (LBC, n= 1366)30. After quality
controls (Methods), we retained 9538 gene expression probes
from the CAGE eQTL analysis and 73973 DNAm probes from
the meta-mQTL analysis. In any of the specific analyses below, we
only included SNPs available and with consistent alleles in the
data sets used.

By testing each DNAm probe for associations with genes
within a 2Mb distance in either direction, we detected 21938
DNAm probes that showed significant SMR associations with
4804 gene expression probes (corresponding to 3991 unique
genes) at PSMR < 2.26 × 10−8 correcting for ~2.21 million tests.
We further used the HEIDI approach to test against the null
hypothesis that the association detected by the SMR test is due to
pleiotropy, rejecting those with PHEIDI < 0.01 (Supplementary
Note 2). Finally, 10,588 associations between 7858 DNAm and
3239 gene expression probes (corresponding to 2733 genes) were
not rejected by the HEIDI test. On average, 3.0 DNAm sites were
associated with each gene, with a median value of 2.0 and a
standard deviation of 3.1. For the DNAm sites associated with the
same gene, they tended to be located proximally (average
distance= 35.4 kb) and enriched in enhancers (see the enrich-
ment analysis below), and their effects on the expression level of
the gene tended to be in the same direction (87.2% pairs in the
same direction). More than a half of the DNAm located in
promoters (61.0%) or enhancers (62.2%) were negatively

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03371-0

2 NATURE COMMUNICATIONS |  (2018) 9:918 | DOI: 10.1038/s41467-018-03371-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


associated with the expression levels of the target genes,
consistent with the hypothesis that most transcription factors
are activators and the binding affinity of transcription factors on
promoters and enhancers are affected by DNAm.

The SMR associations not rejected by the HEIDI test are
consistent with a pleiotropic model whereby both DNAm and
transcript are affected by a shared causal variant. We therefore
hypothesized that the DNAm sites are located in regulatory
elements that are functionally relevant to the associated genes. To
test this hypothesis, we conducted an enrichment analysis
(Methods) of the 7858 transcript-associated DNAm probes in
14 main functional annotation categories in blood samples from
REMC (Methods)27. We found a significant enrichment of these
DNAm probes in the promoter (fold-change= 1.39, P= 3.21 ×
10−88) and enhancer (fold-change= 2.66, P= 2.20 × 10−71)
regions and a significant underrepresentation in heterochromatin
(fold-change= 0.35, P= 7.53 × 10−6), repressed (fold-change=
0.68, P= 2.79 × 10−15) and quiescent regions (fold-change=
0.48, P= 1.61 × 10−157), and transcription starting sites (fold-
change= 0.59, P= 5.86 × 10−17) in comparison with the probes
sampled at random with the variance of DNAm levels at each
probe matched (Fig. 2). These results demonstrate the use of
eQTL and mQTL summary data to genetically link a gene to its
regulatory elements.

We also conducted a SMR & HEIDI analysis considering gene
expression as the exposure and DNAm as the outcome (denoted
as T2M analysis). The associations identified by M2T and T2M
showed a substantial overlap (4182 associations in common) with
6406 and 3598 unique associations identified by M2T and T2M
respectively (Supplementary Fig. 2), suggesting that M2T is more

powerful than T2M. However, there were 248 associations
identified by T2M, for which the instrument SNP explained
significantly larger proportion of variance in gene expression than
DNAm (Supplementary Data 1 and Supplementary Note 3),
implying a potential mechanism that the genetic effect on DNAm
is mediated through gene expression. The map between
transcriptome and methylome identified in this study have been
integrated in an online database (URLs), which is useful for
interpreting the discoveries from MWAS31 and understanding
the mechanism of genetic regulation of gene expression. The
pleiotropic associations between DNAm and gene expression are
driven by shared causal variants, and are therefore robust to
environmental exposures or disease, unless the environmental
exposures or diseases are dominated by a specific genotype, which
is very unlikely for complex traits (Supplementary Fig. 3).

Genes in the closest physical proximity with the DNAm sites
are often used as the target genes in MWAS. Given the
DNAm–gene associations identified from the analysis above, we
can estimate the proportion of DNAm sites mapped to the
nearest genes. We found that only 36.3% of the DNAm sites were
mapped to the nearest genes (πnearest) and 70.1% were mapped to
distal (i.e., not the nearest) genes (πdistal), with 6.4% mapped to
both. There were a number of DNAm sites mapped to genes
beyond 500 kb distance (Supplementary Fig. 4). For each of the
distal DNAm–gene associations, we calculated the correlation in
expression level between the nearest and distal genes. The mean
correlation was only slightly above zero (mean r= 0.024, s.e.m.=
0.0020) and not significantly different from that of the same
number of random gene pairs sampled from cis-regions with
distances matched (mean r= 0.023, s.e.m.= 0.0033), not
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supporting the hypothesis that the distal associations are
mediated through the nearest genes. Since not all the gene
expression probes were included in the SMR analysis (we only
included probes with cis-eQTL P < 5 × 10−8), πnearest (πdistal)
could possibly be underestimated (overestimated) because some
of the cis-eQTLs were not detected due to the lack of power. We
then excluded 3368 DNAm probes for which the nearest genes
were not included in the SMR analysis. The estimate of πnearest
increased to 63.6% and πdistal decreased to 47.6% (11.2% mapped
to both). However, this stringent criterion would probably lead to
an overestimation of πnearest (underestimation of πdistal) because
some of the nearest genes do not have cis-eQTL even if the
sample size is infinite. Nevertheless, our results indicate that at
least 47.6% of the DNAm are involved in relatively distal
regulation of the target genes, providing an important caveat that
DNAm, such as those discovered in MWAS, do not always target
the nearest genes. This result is supported by the observation
from recent functional studies8,32 that the causal variants are
largely located in regulatory sequences (e.g., enhancer regions)
that are distal from the causal genes that they act on.

Pinpointing functionally relevant DNAm and target genes. We
applied the SMR & HEIDI method to perform pleiotropic asso-
ciations of both the transcriptome and the methylome with 14
complex traits (including diseases). The summary statistics of
SNP associations for the phenotypes were from the latest GWAS
meta-analyses for complex traits32,34,35 and diseases36–42

(Methods and Supplementary Data 2). Using the cis-eQTL
summary data of 9538 gene expression probes from the CAGE
eQTL analysis described above, we performed the SMR test for
associations between gene expression probes and each of the 14
traits, and identified 374 genes (tagged by 446 gene expression

probes) at a genome-wide significance level (PSMR < 6.97 × 10−6,
i.e., 0.05/7177 tagged genes) for 13 traits (Supplementary Data 3).
The HEIDI test rejected 152 of the associations detected by the
SMR test (222 remaining) at a threshold 0.01 (Supplementary
Data 3). Approximately, 65.6% of the 222 significant genes were
not the nearest genes to the GWAS top associated SNPs, con-
sistent with the result from a previous study9. We further
developed a multi-SNP-based SMR method (SMR-multi)
(Methods) and identified 564 genes at a genome-wide significance
level, of which 235 were not rejected by the HEIDI test (Sup-
plementary Data 4). The multi-SNP-based SMR test appeared to
be more powerful than the single-SNP-based test (564 vs. 374).
However, the number of SMR associations not rejected by the
HEIDI test for the former was only mildly larger than that for the
latter (235 vs. 222), suggesting SMR-multi picked up a large
proportion of associations due to linkage. We therefore focused
on the results from SMR and relegated those from SMR-multi in
Supplementary Data 4. In the analysis with DNAm data, we used
cis-mQTL summary data of 73973 DNAm probes from the meta-
analysis described above and detected 1903 DNAm probes
(Supplementary Data 5) associated with 14 complex traits at a
genome-wide significance level (PSMR < 6.81 × 10−7, i.e., 0.05/
73448 where 73448 was the number of DNAm probes used in the
analysis after matching the SNPs and alleles among the mQTL,
GWAS and LD reference data), of which 893 DNAm probes were
not rejected by the HEIDI test at PHEIDI > 0.01.

Combining the results from pleiotropic associations between
DNAm, transcripts and complex traits can potentially pinpoint
functionally relevant genes and regulatory elements at GWAS
loci, as demonstrated by the consistent association signals at the
shared genomic regions across multiple omics layers (Fig. 3).
When combining the results, we used a stringent criterion that
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both the DNAm site and transcript of each pair were associated
with the trait at a genome-wide significance level with none of the
associations rejected by the HEIDI test (see Supplementary
Data 6 for details of the results from the SMR & HEIDI test). Of
the 10588 DNAm–gene associations identified from the analysis
above, 225 pairs (consisting of 149 DNAm and 66 genes) were
significantly associated with 12 traits. Taking schizophrenia
(SCZ) as an example, we found 10 genomic regions (tagged by
19 genes and 52 DNAm sites) with consistent significant
association signals from DNAm sites and transcripts (Fig. 3).
These results are in line with a model that the effects of genetic
variants in these regions on SCZ susceptibility are mediated by
the regulation of gene expression through DNAm (Fig. 1a).
Among the 10 identified regions for SCZ, one on chromosome 12
(12q24.31) shows a pleiotropic effect on educational years (EY;
Supplementary Fig. 5), consistent with a positive genetic

correlation (rg) between SCZ and EY43. It should be noted that
the gene–trait association analysis was not dependent on the
DNAm–trait association analysis. There were 222 genes that
showed pleiotropic associations with the traits, only 66 of which
showed pleiotropic associations with DNAm.

Similar to the enrichment analysis of all transcript-associated
DNAm sites shown above (Fig. 2), a subset of the 149 transcript-
and trait-associated DNAm sites were also significantly enriched
in the promoter and enhancer regions (Supplementary Fig. 6). Of
the 66 identified genes, 22 genes are associated with diseases
(Supplementary Data 7), i.e., Alzheimer’s disease (AD), rheuma-
toid arthritis (RA), SCZ, Crohn’s disease (CD), ulcerative colitis
(UC) and coronary artery disease (CAD). To evaluate the
potential value of the 22 putative disease susceptibility genes in
drug discovery, we obtained all the drug target genes from a
recent study42 based on two major drug databases, Drugbank44
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and Therapeutic Targets Database45, which include drugs
approved in clinical trials or experimental drugs. We found that
five genes identified in our study (MS4A2, FADS1, FADS2, LIPA,
SULT1A1) overlapped with the drug targets (Supplementary
Data 8). For the drugs listed in Supplementary Data 8, those with
estimated effects decreasing the disease risk might potentially be

used as the candidates for drug repositioning, whereas those with
estimated effects increasing the disease risk might need to be
monitored for side effects in clinical trials or practice.

Plausible mediation mechanism for susceptibility genes. The
discovery of putative functional genes and their regulatory
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elements in our analysis provides opportunities to infer the
mechanism of genetic regulation at a GWAS locus. A notable
example is the DNAm that reside in the promoter region within
FADS2 for RA (Fig. 4a), where the SNP-association signals are
significant and consistent across data from GWAS, eQTL and
mQTL studies, implying a plausible biological pathway. We
detected two gene expression probes (ILMN_2075065 and
ILMN_1670134) tagging FADS1 and FADS2 that are significantly
associated with RA. The SNP-association signals for gene
expression coincide with those for the five nearby DNAm probes
(cg06781209, cg21709803, cg01400685, cg25324164 and
cg14911132) that are mapped to the two genes, suggesting that
the two genes are co-expressed (estimated correlation of 0.56 in
the GTEx blood samples) and potentially regulated by these five
DNAm sites. The co-regulation hypothesis is supported by the
evidence that both FADS1 and FADS2 are involved in the
metabolism of omega-6 and omega-3 fatty acids46 (Supplemen-
tary Data 7). Indeed, the five DNAm sites that are significantly
associated with FADS1 and FADS2 are in the promoter and
nearby enhancer regions of the two genes according to the
chromatin state annotations from the REMC28 reference samples.
Furthermore, rs968567 is the top associated SNP in both the
eQTL analysis of the two genes and the mQTL analysis of the five
DNAm (Supplementary Data 6). This variant is only 567 bp away
from one of the five DNAm sites and has been identified in a
recent study47 as the binding site of transcription factor SREBF2.
The negative estimates of methylation effects on gene expression
from SMR (bSMR=−0.812, Supplementary Data 6) indicate a
repressing role of DNAm on target gene expression. With all the
evidence above, we hypothesize a mechanism in which the genetic
variant (rs968567) at the promoter of FADS2 gene alters the
DNAm, which disrupts the binding of transcription factor
(SREBF2), down-regulating the expression of the FADS2 gene and
therefore decreasing the risk of RA47 (Fig. 4b).

The ATG16L1 gene for CD is another interesting example of
inferring a plausible mechanism of genetic mediation from the
SMR analysis of omics data. As shown in Fig. 5a, there are five
DNAm sites that are significantly associated with ATG16L1 and
CD, among which two are in the promoter region and three are in
an enhancer region within the open reading frame (ORF) of
ATG16L1. This enhancer is highly tissue-specific and is only
present in the blood, thymus, digestive system and a few obscure
samples in REMC; most of these tissues are relevant to CD. An
intronic variant rs2241880 in ATG16L1, which has been
confirmed to be the causal variant for CD and has been validated
at the protein level48, is only 56 bp away from one of the
associated DNAm sites in the tissue-specific enhancer region
(Supplementary Data 6). All the results point strongly towards a
mechanism of genetic regulation of gene expression initiated by
DNAm in the enhancer and mediated through
enhancer–promoter interactions at the ATG16L1 locus for CD
(Fig. 5b). Furthermore, the identified DNAm in the enhancer and
promoter regions all have positive effects on gene expression

(Supplementary Data 6), suggesting that the transcription factors
that bind to these regions are repressors (Fig. 5b).

One further example is the regulatory mechanism of a gene
(i.e., LIPA) associated with CAD. A previous study has shown
that an exonic variant rs1051338 in LIPA decreases lysosomal
acid lipase levels and activity in lysosomes49. Interestingly, we
found that the top associated DNAm is located in an enhancer
region and that the top mQTL is only 110 bp away from
rs1051338 (Supplementary Fig. 7).

We have shown, as a proof-of-principle, the examples above
where the functional genes and the likely mechanisms are known
or strongly supported by previous studies. However, these
examples are rare. We have identified 66 genes and 149 DNAm
that show pleiotropic associations with 12 traits. These results
demonstrate the power of re-analysing and integrating different
levels of data from published studies of large sample size to make
novel discoveries and to shed light on putative causal genes and
regulatory elements that can be prioritized in functional studies.

Pleiotropic effects of DNAm, transcripts and traits. Previous
studies have used GWAS data to characterize genetic overlap
between human complex traits and common diseases43,50. In our
integrative analysis, we detected several DNAm sites and/or
transcripts that show pleiotropic effects on multiple traits (Sup-
plementary Data 9), especially traits that are known to be
genetically correlated. Shown in Supplementary Fig. 8 is an
example in which the ARL6IP4 locus shows pleiotropic effects on
EY and SCZ (estimated rg from genome-wide SNPs51 of 0.10, P
= 8.47 × 10−3), where the SNP-association signals from the
mQTL and eQTL studies are highly consistent with those from
GWAS for EY and SCZ. We have examples where the effect sizes
of a transcript on two traits are in the same direction. For
example, height shares genes (SLC22A4 and SLC22A5) with CD,
and the effects of transcripts on the two traits are in the same
direction, which is accordant with the positive genetic correlation
(rg= 0.06, P= 0.12) between two traits although the estimate of
rg is very low and not significant. We also observed pleiotropic
effects in the opposite direction for two negatively correlated
traits, e.g., height and low-density lipoprotein (LDL) (rg=−0.09,
P= 8.02 × 10−3), at three genes (PLEC, GRINA and PARP10)
(Supplementary Fig. 9). Among all 14 traits, height shares the
largest number of genes with other traits, which is likely due to
the relatively larger GWAS sample size and the polygenic archi-
tecture. Not surprisingly, the pairs of traits that share more than
three pleiotropic genes are those that have been shown to be
genetically correlated43, e.g., height and LDL (rg=−0.09, P=
8.02 × 10−3), CD and UC (rg= 0.54, P= 1.69 × 10−13), and EY
and height (rg= 0.13, P= 3.82 × 10−6). Nevertheless, this con-
cordance depends on the sample sizes of the GWAS data.

Robustness and tissue specificity. Having identified many
pleiotropic associations between DNAm, gene expression, and
complex traits, we then sought to investigate how robust the

Fig. 4 Prioritizing genes and regulatory elements at the FADS1/FADS2 locus for rheumatoid arthritis (RA) with a plausible regulation mechanism. a Results
of SNP and SMR associations across mQTL, eQTL and GWAS. The top plot shows −log10(P-values) of SNPs from the GWAS meta-analysis for RA42. The
red diamonds and blue circles represent−log10(P-values) from SMR tests for associations of gene expression and DNAm probes with RA, respectively. The
solid diamonds and circles are the probes not rejected by the HEIDI test. The yellow star indicates the previously reported causal variant rs968567. The
second plot shows −log10(P-values) of the SNP association for gene expression probe ILMN_2075065 (tagging FADS2) from the CAGE eQTL study. The
third plot shows −log10(P-values) of the SNP associations for DNAm probe cg06781209 from the mQTL study. The bottom plot shows 14 chromatin state
annotations (indicated by colours) of 127 samples from REMC for different primary cells and tissue types (rows). b A hypothetical regulation mechanism.
When the DNAm site in the promoter is unmethylated, the transcription factor SREBF2 (activator) binds to the promoter and enhances the transcription of
the FADS2 gene. When the DNAm site is methylated (by the effect of the genetic variant rs968567 at the promoter), the binding of SREBF2 is disrupted
and therefore the transcription of FADS2 is suppressed
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results are across tissues and data sets. We used the same data-
filtering criteria (Methods) for a replication analysis using eQTL
summary data from whole-blood samples in Westra et al.26 and
for a tissue-specific analysis using eQTL summary data from
brain samples in the Common Mind Consortium (CMC)52,

Genotype-Tissue Expression (GTEx)53 and the Brain eQTL
Almanac (Braineac)54. We performed the SMR analysis using
eQTL summary data of 5967 gene expression probes after quality
controls from the Westra et al. study26, which has a larger sample
size (n= 5311) than CAGE. We used CAGE for discovery
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because of its denser SNP coverage (SNPs in Westra were
imputed to HapMap2 with a maximum of ~2.5 M, and only SNPs
with PeQTL < 1 × 10−5 are available). For the significant
DNAm–transcript associations identified using the CAGE data,
the SMR estimates of the effect sizes of DNAm on transcripts
were highly consistent with those estimated in the Westra data
(Supplementary Fig. 10) with an estimated correlation of 0.98. A
total of 24360 (63%) significant DNAm–transcript associations
detected using the CAGE data were significant at PSMR < 2.90 × 10
−7 in the analysis with the Westra eQTL data. Although there is a
sample overlap between CAGE and Westra, this analysis
demonstrates the robustness of the results across data sets gen-
erated from different studies.

In addition, we used data from the blood samples as the
discovery set because of the large sample sizes, which maximizes
the power of discovery. To test whether eQTL and mQTL data
from the blood sample are good representatives of those from the
most relevant tissue, we performed the SMR analysis for SCZ and
EY using three eQTL data sets from the brain (i.e., CMC, GTEx
and Braineac). In total, there are nine genes (56%) replicated for
SCZ and seven genes (77%) replicated for EY in at least one of the
three brain eQTL data sets (Supplementary Data 10). These
replication rates are surprisingly high given the relatively small
sample sizes of the brain eQTL studies (n= up to 467). Genes
SNX19, NT5C2 and MAPK3 for SCZ and the genes ERCC8 and
C18orf8 for EY (Supplementary Fig. 11) were replicated in at least
two data sets. MAPK3 was highlighted in a recent study55 as a
functional gene whose expression is up-regulated by a variant by
disrupting chromatin activity, which is associated with a decrease
in SCZ risk. Consistent with our previous result9, we again
detected the association of SNX19 with SCZ in the GTEx data.
Figure 6 shows that the eQTL association signals for SNX19 from
the three data sets of two different tissues are consistent with the
GWAS association signals for SCZ, despite that the gene
expression levels were measured by different technologies (gene
expression microarray for Braineac and RNA sequencing for
GTEx). We further identified five DNAm probes that were
associated with both SNX19 and SCZ at promoter and enhancer
regions close to SNX19 (Fig. 6). Together with that SNX19 is the
only annotated gene underlying this GWAS locus, the results
suggest a likely mechanism that a genetic variant (of course, may
not be the GWAS top SNP) alters the methylation level of a DNA
element that regulates the expression level of SNX19, resulting in
a small difference in susceptibility to SCZ.

Discussion
We introduced an integrative analysis based on the SMR &
HEIDI method to map DNAm sites to putative target genes and
further map both to a complex trait. We tested a model at each
GWAS locus to evaluate whether an SNP exerts an effect on the
trait by altering the DNAm level, which regulates the expression
level of a functional gene (Fig. 1a). This hypothetical model is
supported by many examples of consistent SMR associations

across DNAm, transcript and complex traits in our analysis. It is
also consistent with our observation that the variance explained
by the top associated mQTL decreases dramatically from that for
DNAm to gene expression and to phenotype (Fig. 7).

In this study, we identified 7858 DNAm probes associated with
2733 genes, of which 149 DNAm loci and the corresponding 66
putative target genes are associated with 12 complex traits and
diseases, through pleiotropy. As expected, the DNAm that show
pleiotropic associations with genes are enriched in the enhancer
and promoter regions. Notably, 48–70% of the DNAm sites do
not show pleiotropic association with their closest genes, indi-
cating that a large proportion of DNAm sites are in distal func-
tional regions (e.g., enhancer) and regulate the target genes
probably through interactions of looping chromatins56. Further-
more, DNAm in enhancer and promoter regions is presumed to
be involved in the transcription factor binding process57, which
implicates the likely role of the causal variants as binding sites.
Given the direction of DNAm effect on gene expression, we can
further infer the role of the transcription factor as an activator or
repressor. In this study, we found that a substantial number of
DNAm sites (46%) have positive effects on their target genes,
implying that the transcription factors that bind to the unme-
thylated DNA at these sites are likely to be repressors. We
replicated several putative causal genes for complex traits repor-
ted in previous studies (e.g., ATG16L1 for CD and LIPA for CAD)
48,49. However, the causal genes for body mass index (BMI) (i.e.,
IRX3 and IRX5) were not detected in our study, likely because the
effects of the FTO SNP on IRX3 and IRX5 are specific in primary
preadipocytes (a minority group of adipose cells)8 whereas the
eQTL data used in our study were from peripheral blood. In
summary, based on the methylome-transcriptome map, the
incorporation of DNAm–trait and transcript–trait association
information contributes to an understanding of the mediation
mechanism of genetic variants on complex traits and diseases.

Under the analytical paradigm introduced in this study, it is
straightforward to incorporate other types of molecular traits
from specific cells. For instance, RNA splicing can be an
important source in the differentiation of gene expression. One
recent study showed that splicing QTLs (sQTLs) contribute
remarkably to complex trait variation, roughly as much as that
from eQTLs58. An integrative analysis that combines sQTL data
is expected to shed light on the underlying mechanism of dif-
ferential expression. Other types of epigenetic data, such as
chromatin phenotypes59, can be further used to detect epigenetic
interactions and decipher gene regulations in three dimensions.

Although a tissue-specific mechanism has been proposed to
explain the differences in gene expression levels across different
primary cells and tissues, we showed that a large proportion of
the detected genes for SCZ and EY using peripheral blood sam-
ples is replicated in brain tissues. Using the data in a single tissue
with a large sample size allows us to gain power in the discovery
of novel trait-associated genes and regulatory elements. On the
other hand, the power of the SMR test largely depends on the

Fig. 5 Prioritizing genes and regulatory elements at the ATG16L1 locus for Crohn’s disease (CD) with a plausible regulation mechanism. a Results of SNP
and SMR associations across mQTL, eQTL and GWAS. The top plot shows −log10(P-values) of SNP from the GWAS meta-analysis for CD40. The red
diamonds and blue circles represent –log10(P-values) from the SMR tests for associations of gene expression and DNAm probes with CD, respectively. The
solid diamonds and circles represent the probes not rejected by the HEIDI test. The yellow star indicates the previously reported causal variant rs2241880.
The second plot shows −log10(P-values) of the SNP associations for gene expression probe ILMN_1725707 (tagging ATG16L1). The third plot shows
−log10(P-values) of the SNP associations for DNAm probe cg07618928. The bottom plot shows 14 chromatin state annotations (indicated by colours) of
127 samples from REMC for different primary cells and tissue types (rows). b A hypothetical regulation mechanism. When the DNAm site in the enhancer
is unmethylated, repressors can bind to the enhancer, decrease the activity of the promoter, and thus suppress the transcription of the ATG16L1 gene.
When the DNAm site is methylated (by the effect of the genetic variant rs2241880 in the enhancer), the binding of repressors is disrupted, which prevents
the transcription of ATG16L1 from suppression
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Fig. 6 Replication analysis in the SNX19 locus for schizophrenia (SCZ). The top plot shows −log10(P-values) of the SNPs from the GWAS meta-analysis for
SCZ36. The red diamonds and blue circles represent −log10(P-values) from the SMR tests for associations of gene expression and DNAm probes with SCZ,
respectively. The solid diamonds and circles represent the probes not rejected by the HEIDI test. Plot #2, #3 and #4 (red crosses) show −log10(P-values)
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The bottom plot shows 14 chromatin state annotations (indicated by colours) of 127 samples from REMC for different primary cells and tissue types (rows)
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sample size of GWAS because of the small effect sizes of SNPs on
complex traits (Fig. 7). For example, no gene expression probe
and only eight methylation probes were significantly associated
with T2D in the SMR test, likely a consequence of the limited
sample size of GWAS for T2D. In addition, only a subset of
probes were used in the SMR analysis after the filtering criterion
that at least one SNP is significantly associated with the transcript
(PeQTL < 5 × 10−8). A proportion of transcripts may be further
missed due to the elimination of expression probes with incon-
sistent gene mapping when combining eQTL data across multiple
studies (e.g., CAGE), resulting in a potential loss of power. Given
that future eQTL and mQTL studies will have larger sample sizes,
we expect to detect more genes and DNAm sites that show
pleiotropic associations with complex traits and diseases through
our integrative analysis.

There is a limitation of this study. That is, we performed the
SMR & HEIDI analysis to detect DNAm–gene, DNAm–trait and
gene–trait associations separately, and focused on the association
signals that were consistent across the three analyses at a locus.
This strategy, however, is not optimal and potentially loses power
because of thresholding the results by P-values in multiple steps.
Further development of the method that integrates GWAS data
and all the omics data in a single test is a priority in the future
(Supplementary Note 4). Despite this limitation, our study pro-
vides a statistically elegant analytical paradigm that integrates
genomic, transcriptomic and epigenomic information to under-
stand the regulatory mechanism of polygenic effects for complex
traits. The methylome-transcriptome pleiotropic map constructed
in this study will be helpful for researchers to query the putative
target gene(s) of a given DNAm site, and the database (URLs) can
be expanded in the future with more data. The analyses we
perform here can be applied to any other source of omics data
and any other phenotype or disease, even in a different species,
using the tools that we have made available (URLs). The putative
functional genes and regulatory elements identified in this study
provide important leads for designing studies in the future to
understand the mechanism of genetic regulation of genes affect-
ing common complex diseases.

Methods
SMR and HEIDI test for pleiotropic association. The SMR test9 was developed to
test the association of an exposure (e.g., transcript) with an outcome (e.g., trait)
using a genetic variant as the instrumental variable to remove non-genetic con-
founding. Let x be an exposure variable, y be an outcome variable, and z be an
instrumental variable. What these variables refer to varies in different steps of our
analysis. In the step of testing for a DNAm–gene association, x, y and z refer to
DNAm, transcript and the top-associated mQTL, respectively. In the steps of
testing for a DNAm/transcript–trait association, x, y and z refer to DNAm/tran-
script, trait and the top-associated mQTL/eQTL, respectively. The Mendelian
Randomization (MR) estimate of the effect of exposure on outcome (b̂xy) is the
ratio of the estimated effect of instrument on exposure (b̂zx) and that on outcome (
b̂zy)9,60,61:

b̂xy ¼ b̂zy=b̂zx ;

where b̂zx and b̂zy are available from mQTL, eQTL or GWAS summary data. One
of the basic assumptions for MR is that the instrument should be strongly asso-
ciated with exposure. We therefore only select the top associated eQTL/mQTL at P
< 5 × 10−8 as an instrument for an SMR analysis. The standard error (SE) of b̂xy
can be computed from the SEs of b̂zx and b̂zy using the Delta method9,61. The
significance of b̂xy can therefore be assessed by the Wald test, i.e., b̂xy

SE

� �2
� χ21.

A significant association detected by the SMR test above can result from either a
pleiotropic model (i.e., the exposure and the outcome are associated owing to a
single shared genetic variant) or a linkage model (i.e., there are two or more genetic
variants in LD affecting the exposure and outcome independently). To distinguish
pleiotropy from linkage, the HEIDI (heterogeneity in dependent instruments) test
was developed to test against the null hypothesis that there is a single causal variant
underlying the association (pleiotropy)9. In brief, we use multiple SNPs (e.g., the
top 20 associated mQTLs/eQTLs after pruning SNPs for either too strong or too
weak LD9) in a cis region to detect whether the association patterns across the
region are homogeneous or not (a homogenous pattern indicates a single shared
causal variant). That is, we assess the difference between b̂xy estimated at the top
associated instrument b̂xyð0Þ

� �
and b̂xy estimated at a less significant instrument

b̂xy ið Þ
� �

:

d̂i ¼ b̂xy ið Þ � b̂xy 0ð Þ:

For multiple SNPs, bd � MVN d;Vð Þ, where bd ¼ d̂1; � � � ; d̂m
n o

and V is the
covariance matrix because most SNPs are likely in LD9. In this study, we estimated
LD from the Health and Retirement Study (HRS)62 with SNP data imputed to the
1000 Genomes Project (1KGP)63. Under the null hypothesis (pleiotropic model), d
= 0. We use an approximate multivariate approach to test whether d is significantly
deviated from 0 (equivalent to a test for evidence of heterogeneity in b̂xy estimated
at multiple instruments that are likely in LD)9,64. We reject the SMR associations
that show significant heterogeneity as detected by the HEIDI test.
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An example of a genomic locus for height, where the SNP-association signals are consistent across mQTL, eQTL and GWAS, indicating a single shared
underlying causal variant, but the variance explained decreases dramatically across these studies
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Multi-SNP-based SMR test. We can extend the SMR method by including
multiple SNPs at a cis-mQTL/eQTL locus in the SMR test. We call this method as
SMR-multi and have implemented in the SMR software (URLs). First, we select all
the SNPs with P < 5 × 10−8 in the cis region (e.g. within 500 kb of the probe) and
remove SNPs in very high LD with the top associated SNP (e.g. LD r2 > 0.9). We
then estimate bxy(i) at each of the SNPs and combine the bxy estimates of all the
SNPs in a single test using an approximate set-based test developed previously64

accounting for LD among SNPs. In brief, let z= {zi} be a vector of z-statistics for all
the instruments at a locus, where zi � bxy ið Þ=SE. Under the null hypothesis, z
follows a multivariate normal distribution, i.e. z ~MVN(0, R), where R is the LD
correlation matrix for the SNPs at a locus. For the significance test, we use the test-
statistic T ¼ P

i z
2
i , which does not have an explicit cumulative density function

but can be approximated by the Saddlepoint method64,65.

Data used for the integrative analysis and quality controls. The eQTL
summary-level statistics were from the CAGE29 data, which consists of a total of
seven distinct cohorts with gene expression levels measured in peripheral blood.
This unified dataset comprises 2765 individuals (predominantly Europeans), 38624
normalized gene expression probes and ~8 million SNPs. The eQTL effects were in
standard deviation (SD) units of transcription levels. For replication, we used eQTL
summary-level data from the Westra et al.26 study, which is a meta-analysis of 5311
blood samples based on SNP data imputed to HapMap2 (ref.66). Gene expression
in these two data sets was mainly measured based on Illumina HumanHT-12 v3.0
chip, and the annotations were from Illumina based on hg18 (see URLs). We used
the function illuminaHumanv4fullReannotation in Bioconductor67 to update the
annotation of the gene expression probes based on hg19. Next, we selected the
probes with good tagging of gene expression (i.e., a probe annotation quality score
of at least 'good'68) and at least one cis-eQTL passing the significant threshold
(PeQTL < 5 × 10−8). The eQTL effect sizes were not available in Westra data, but
they were estimated from z-statistics using the method described in Zhu et al.9.
Probes at the major histocompatibility complex (MHC) region were excluded
because of the complexity of this region. We also removed probes with SNPs in the
hybridization sequences. Finally, we retained 9538 and 5967 gene expression
probes from CAGE and Westra, respectively, for analysis.

The mQTL data were from the Brisbane Systems Genetics Study30 (n= 614)
and Lothian Birth Cohorts of 1921 and 193631 (n= 1366). All the individuals are of
European descent. The methylation states of all the samples were measured based
on Illumina HumanMethylation450 chips, consisting of 485512 DNAm probes.
For these probes, an enhanced annotation from Price et al.69 (see URLs) was used
to annotate the closest genes of DNA methylation probes. The summary-level
statistics of the two independent cohorts were obtained from a recent mQTL
study27, where the mQTL effects were in SD units of DNAm levels. There were ~8
million genetic variants after quality control and 55000 mQTL were cross-
replicated in the two data sets at a very stringent significance level. We performed a
meta-analysis of the two cohorts and identified 94338 methylation probes with at
least a cis-mQTL at PmQTL < 5 × 10−8. We excluded methylation probes in MHC
regions and probes with SNPs in the hybridization sequences, resulting in 73973
probes retained for analysis.

We included in the analysis 14 complex traits (including disease). They are
height, BMI, waist–hip ratio adjusted by BMI (WHRadjBMI), high-density
lipoprotein, LDL, thyroglobulin, EY, RA, SCZ, CAD, type 2 diabetes (T2D), CD,
UC and AD. The GWAS summary data were from the latest GWAS meta-analyses
(predominantly in Europeans) at the time when the analyses were performed,
where the sample sizes are up to 339224 (Supplementary Data 2). The number of
SNPs varies from 2.5 to 9.4 million across traits. The SNP effects on quantitative
traits were in SD units, whereas those on disease traits (e.g., case-control design)
were expressed as log odds-ratios. For those traits (i.e., RA and SCZ) for which the
SNP allele frequencies are not available, we estimated the allele frequencies using
the 1KGP-imputed HRS data. We further excluded variants with a minor allele
frequency <0.01.

Chromatin state annotation. The epigenomic annotations as shown in Figs 4–6
are from the Roadmap Epigenomics Mapping Consortium (REMC), which is
publicly available for download at http://compbio.mit.edu/roadmap/. We use these
annotations to indicate the regulatory elements and cell and tissue types where the
functional DNAm sites and causal variants might act. The chromatin state data of
127 epigenomes were profiled by the Roadmap Epigenomics Project28 and
ENCODE Project70 in a number of primary cells and tissue types (URLs). The 25
chromatin states were predicted by ChromHMM71 based on the imputed data of
12 histone-modification marks. The 14 main functional categories such as those
shown in Fig. 4 and the enrichment analysis below were derived from the 25
chromatin states by combining functionally relevant annotations to a single
functional category (Supplementary Table 1).

Enrichment test of functional categories. We used the chromatin state anno-
tation of 23 blood cell types from 127 epigenomes described above to test whether
the transcript-associated DNAm are enriched in any functional region(s). We
quantified the proportion of overlap between the transcript-associated DNAm
probes and 14 main functional categories (see Fig. 2). To calibrate the distribution

under the null of no enrichment, we repeated the analysis with the same number of
DNAm probes randomly sampled from all probes, matching their variance in
DNAm levels with each of the transcript-associated DNAm probes. This procedure
was performed over 500 times, and the fold enrichment was calculated by a
comparison of the observed value with the mean from 500 null replicates. To assess
the significance of the enrichment test, we estimated the standard error of the fold
enrichment from 100 null replicates.

Tissue specificity analysis from brain samples. To detect the tissue specificity
for brain-related traits or disease, we performed the SMR analysis using eQTL
summary data from the Common Mind Consortium (CMC) and Genotype-Tissue
Expression (GTEx). Gene expression levels of these two data sets were quantified
by RNA sequencing, and the annotation was from GENCODE Version 19 (ref.72).
The GTEx summary data are available at dbGaP (URLs), and the sample size of the
brain tissue is up to 125. It consists of up to 24762 transcripts in 10 brain regions
and up to ~6.5 million 1KGP-imputed variants. We carried out the SMR analysis
for each brain region and counted the result as a successful replication if a sig-
nificant SMR result from the analysis with the CAGE data was detected in any of
the 10 brain regions after correcting for multiple tests. We further validated the
results using the CMC data, which were generated from 467 brain samples. Gene
expression levels were measured across multiple regions of the whole brain. The
eQTL summary data were from the analysis of 16423 transcripts and ~2 million
1KPG-imputed variants. We also performed the SMR analysis with Braineac eQTL
summary data, which are available in the public domain (see URLs) and comprise
26493 gene expression probes in ten brain regions and ~6 million genetic variants
on up to 134 individuals.

URLs. For M2Tdb, see http://cnsgenomics.com/shiny/M2Tdb/. For SMR, see
http://cnsgenomics.com/software/smr. For GTEx, see http://www.gtexportal.org/
home/. For CMC, see https://www.synapse.org/CMC. For Braineac, see http://
www.braineac.org/. For the Annotation file for the Illumina HumanHT-12 v3.0
Gene Expression BeadChip, see https://support.illumina.com/downloads/
humanht-12_ v3_product_files.html. For the

Annotation file for the Illumina HumanMethylation450 BeadChip, see. https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304.

Data availability. The summary-level eQTL data from the CAGE and mQTL data
from the meta-analyses of LBC and BSGS are available at http://cnsgenomics.com/
software/smr/#Download. All the other data sets used in this study are from the
public domain. The software tools are available at the URLs above.
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