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Introductory paragraph 47	

 48	

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but 49	

functional characterization is rarely undertaken, leading to diagnostic uncertainty1,2. For 50	

example, mutations in PPARG cause Mendelian lipodystrophy3,4 and increase risk of type 2 51	

diabetes (T2D)5. While approximately one in 500 people harbor missense variants in PPARG, 52	

most are of unknown consequence. To prospectively characterize PPARγ variants we used 53	

highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single 54	

amino acid substitutions. We developed a pooled functional assay in human macrophages, 55	

experimentally evaluated all protein variants, and used the experimental data to train a variant 56	

classifier by supervised machine learning (http://miter.broadinstitute.org). When applied to 55 57	

novel missense variants identified in population-based and clinical sequencing, the classifier 58	

annotated six as pathogenic; these were subsequently validated by single-variant assays. 59	

Saturation mutagenesis and prospective experimental characterization can support immediate 60	

diagnostic interpretation of newly discovered missense variants in disease-related genes. 61	

 62	

  63	
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A major challenge in clinical exome sequencing is determining pathogenicity of 64	

missense variants incidentally found in genes previously implicated in a severe genetic disease 65	

1,2,6. Every exome contains ~200 missense variants that have never before been seen7. Few of 66	

these are in fact pathogenic, but functional testing is too slow and resource intensive for clinical 67	

use, leading to many Variants of Uncertain Significance (VUS)8.  The lack of functional data and 68	

failure to explicitly incorporate information about ascertainment and prior probability can lead 69	

both to misdiagnosis6,9 (if a benign variant is presumed pathogenic) and overestimation of 70	

penetrance (if modestly functional variants are systematically excluded from disease 71	

databases). 72	

 The peroxisome proliferator-activated receptor γ (PPARγ) exemplifies the challenge of 73	

classifying newly identified variants even in a well-studied disease gene. Rare mutations in 74	

PPARG cause familial partial lipodystrophy 3 (FPLD3)3,4 and a common missense variant 75	

p.P12A, along with linked non-coding variants, associates with risk of T2D10,11. Molecular 76	

functions of PPARγ are well characterized12,13 including its role as the target of anti-diabetic 77	

thiazolidinedione medications. Approximately 0.2% of the general population carries a rare 78	

missense variant in PPARG, but only 20% of these variants are functionally significant and 79	

associated with metabolic disease5. 80	

In order to enable functional interpretation of PPARγ variants identified in exome 81	

sequencing we constructed a cDNA library consisting of all possible amino acid substitutions in 82	

the protein (Figure 1A and Supplementary Figure 1). Based on the observation that primary 83	

human blood monocytes from patients with FPLD3 exhibit blunted PPARG response when 84	

stimulated with agonists ex vivo13, the construct library was introduced into human 85	

macrophages edited to lack the endogenous PPARG gene (Supplementary Figure 2). After 86	

stimulation with PPARγ agonists, cells were FACS sorted according to the level of expression of 87	

CD36, a canonical target of PPARγ in multiple tissues14,15 (Figure 1A). The sorted CD36+ and 88	
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CD36- cell populations were sequenced to determine the distribution of each PPARG variant in 89	

relation to CD36 activity.   90	

“Function scores” were generated for each amino acid substitution at each site in PPARγ 91	

(see Methods, Figure 1B, Figure 2A) based on the partitioning of variants into CD36+/- FACS 92	

populations. Over 99% of all possible amino acid substitutions in the protein were covered. Of 93	

the twenty possible amino acid substitutions at each site, change to proline was most likely to 94	

reduce function, and to cysteine was best tolerated, consistent with the known conformational 95	

effects of amino acid side chains on protein structure16. Each of the 505 amino positions in 96	

PPARγ was assigned a “tolerance score” by combining function scores of the 19 alternative 97	

amino acids at that position (Figure 1B). Tolerance scores were overlaid on the known crystal 98	

structure of PPARγ (Figure 2B)17,18 demonstrating that amino acid positions that are intolerant of 99	

substitution cluster at residues that contact DNA, co-activating proteins, and ligands 100	

(rosiglitazone) (Figure 1B, 2B).  101	

We next examined the function scores derived from the CD36/macrophage assay for 102	

those mutations previously reported in patients with lipodystrophy/insulin resistance and known 103	

to diminish PPARγ activity (Figure 2A). These pathogenic variants (Figure 2A, 2C), clustered in 104	

the PPARγ ligand-binding and DNA-binding domains19,4 and had function scores demonstrating 105	

enrichment in the CD36-“low” activity bin. In contrast, higher frequency variants including the 106	

common P12A variant had function scores demonstrating enrichment in the CD36-“high” activity 107	

bin (Figure 2C, Supplementary Table 1). The distribution of function scores for the pathogenic 108	

and common variants were significantly different (p < 6x10-7, KS test).    109	

Linear discriminant analysis was used to combine function scores for each of the 9,595 110	

variants across multiple agonist conditions (Figure 2C) into a classifier that maximized 111	

discrimination between the set of lipodystrophy-associated variants and the set of high 112	

frequency variants described above. The classifier emits the likelihood of each variant being 113	
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drawn from either of the two classes (pathogenic or benign) and can be expressed as a 114	

continuous integrated function score (IFS) (Figure 2C-D).     115	

As above and described in the Methods, the classifier was trained on pathogenic 116	

variants obtained from the published literature and benign variants from population-based 117	

sequencing20. In order to evaluate the performance of the model on independent data, we 118	

turned to novel variants obtained in population-based exome sequencing and sequencing of 119	

PPARG in patients referred to specialty clinics for possible lipodystrophy and early-onset 120	

diabetes. Specifically, we tested the predictions of functionality emitted by the classifier using 121	

standard assays and correlation to clinical phenotypes.   122	

The classifier was applied to data from exome sequencing of 22,106 case/controls 123	

selected for study of early-onset myocardial infarction (MIGEN21).  In total, 57 missense variants 124	

in PPARG were observed with minor allele frequency < 0.1%. Of these, 74% (n=42/57) were 125	

novel and thus had not previously been functionally characterized (Supplementary Table 1). In 126	

order to calculate a posterior probability of pathogenicity relevant to the clinical context in which 127	

the carriers were identified we combined the IFS of these variants with the estimated prevalence 128	

of FPLD3 in the general population (1:100,000-1:1,000,00019).  One variant, p.R194Q, was 129	

estimated pathogenic with high posterior odds (benign:pathogenic) of 1:10,000. The individual 130	

who was heterozygous for p.R194Q carried a diagnosis of T2D and had fasting triglyceride 131	

levels in the 99th percentile (Supplementary Table 2). As described below, p.R194Q was 132	

independently identified in a separate individual referred for clinical features of lipodystrophy 133	

(Figure 3, and Supplementary Table 3) who similarly manifested T2D and severe 134	

hypertriglyceridemia. Moreover, the p.R194Q variant abolished PPARγ transactivation activity in 135	

standard assays (Figure 3C). The combination of clinical and functional data indicate that 136	

p.R194Q is likely pathogenic, and that the individual from MIGEN may have undiagnosed 137	

FPLD3.  138	
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 We next applied the classifier to variants ascertained from 335 patients referred to UK 139	

centers specializing in monogenic forms of diabetes and/or insulin resistance. Thirteen 140	

individuals were identified as carrying novel missense variants in PPARG (Supplementary Table 141	

2 and 3), of whom 77% (10/13) had clinical features suggestive of lipodystrophy and associated 142	

metabolic derangement including severe insulin resistance, non-alcoholic fatty liver, 143	

dyslipidaemia and low serum adiponectin (Supplementary Table 3). The IFS for these thirteen 144	

variants were lower than those found in the population-based cohort (above and Figure 3A) 145	

(P<0.005 Student’s t-test). For each variant, the posterior probability of pathogenicity was 146	

calculated by combining the IFS for that variant and the prevalence of FPLD3 in patients 147	

ascertained in these specialty clinics (~1:7 as estimated from the Cambridge national 148	

lipodystrophy clinic records). 149	

Three variants (p.E54Q, p.D92N, p.D230N) were found in patients without clinical 150	

features of lipodystrophy who had been referred for sequencing based on suspected monogenic 151	

diabetes. Despite a higher prior probability based on ascertainment in specialty clinics, these 152	

three variants were classified as benign with high confidence (posterior odds benign:pathogenic 153	

= 200:1) (Supplementary Table 2). Moreover, when tested individually in standard PPARγ 154	

reporter assays these variants showed function indistinguishable from wild-type PPARγ (Figure 155	

3C). Thus, the rate of benign variant identification in individuals ascertained in specialty clinics 156	

(~1:110, n=335) was similar to the rate of benign variants identified in the MIGEN cohort 157	

(~1:200, n=22,106). 158	

Three variants (p.M31L, p.R308P, p.R385Q) classified as benign with high confidence 159	

were found in individuals with clinical features of partial lipodystrophy. The p.M31L variant was 160	

found in a female proband with features of  lipodystrophy and metabolic derangement 161	

(Supplementary Table 3); critically, her daughter had a very similar fat distribution and metabolic 162	

phenotype but did not carry the p.M31L variant. Thus, in this case, the phenotype did not 163	
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segregate with genotype at PPARG. An individual with partial lipodystrophy carried p.R385Q, 164	

which was independently identified in a woman from the population-based cohort who had not 165	

developed T2D at age 61 (Supplementary Table 2). When tested in PPARγ reporter assays, 166	

these variants retained reporter activity, albeit subtly diminished under some conditions (Figure 167	

3). The combination of functional testing, clinical data, and segregation / epidemiology suggests 168	

that p.M31L, p.R308P, and p.R385Q are likely incidental findings, although it is not possible to 169	

rule out that they act as partial risk-factors for metabolic phenotypes. 170	

 Six variants (p.R194Q, p.A417V, p.R212W, p.P387S, p.M203I, p.T356R) were found in 171	

patients with lipodystrophy and classified as pathogenic with high probability (posterior-odds 172	

benign:pathogenic = 1:>25,000). Five of the six were confirmed as defective in classical 173	

transactivation assays. The exception was p.R212W, where transactivation function when 174	

tested using a synthetic PPARγ response element (PPRE) was normal. However, R212W 175	

showed less activity in a reporter assay with an endogenous promoter (Figure 4A), and reduced 176	

in vitro binding to three PPREs (Figure 4B). The R212 side-chain forms multiple hydrogen-bond 177	

contacts in the minor-groove-bound DNA (Figure 4C), outside the main PPRE binding motif.  178	

These data indicate that R212W is likely a pathogenic variant despite not showing decreased 179	

activity in the traditional functional assay using a synthetic promoter.   180	

 Finally, p.T468K, found in a single patient with partial lipodystrophy, was classified by 181	

IFS as pathogenic with low confidence (posterior-odds benign:pathogenic = 2:3): its score fell in 182	

the overlapping tails of the benign and lipodystrophy-associated variant distributions. In PPARγ 183	

reporter assays, this variant demonstrated severely decreased function (Figure 3), supporting 184	

that p.T468K is likely a pathogenic variant.  185	

 We previously reported that rare missense variants in PPARG that impair function in a 186	

single-variant adipocyte differentiation assay confer increased risk of T2D in the general 187	

population 5. We re-examined this relationship using functional annotation emitted by the 188	
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classifier (i.e. IFS) for the original sample of 118 PPARG variant carriers ascertained from 189	

19,752 T2D case/controls (Figure 5A). We observe a long tail of variants with low IFS in T2D 190	

cases but not controls (P =0.024, two-sample Kolmogorov-Smirnov test). We quantified this 191	

inverse relationship between IFS and T2D case status (logistic regression beta = -0.49 +/- SE 192	

0.15, P=0.002). The odds ratio for T2D in carriers of variants with the lowest tertile of IFS (as 193	

compared to carriers of variants in the highest tertile) was 6.5 (95%CI 1.9 – 41) consistent with 194	

our previously published estimate5. The odds ratio for the middle vs highest tertile of IFS was 195	

2.0 (95%CI 1.3 – 3.1) suggesting that PPARG variants with even moderately reduced IFS 196	

confer a modest increase in T2D risk. By contrast, a conventional predictor of mutation 197	

deleteriousness (CONDEL score22) failed to distinguish between likely pathogenic and benign 198	

variants (Figure 5b; P > 0.1 two-sample Kolmogorov-Smirnov test) by misclassifying many likely 199	

benign variants as pathogenic (Figure 5C). 200	

 These data show that it is possible to experimentally characterize all possible missense 201	

variants in a mammalian gene and use the information to guide interpretation of VUS, a concept 202	

that has been previously applied to single protein domains23,24. Testing variants prospectively 203	

(that is, prior to their discovery in patients) overcomes barriers of time and scalability that have 204	

thus far made it impractical to incorporate experimental data into routine clinical variant 205	

interpretation. Furthermore, by simultaneously and consistently evaluating all variants in a single 206	

experiment, more valid comparisons can be made across variants as compared to data on 207	

different variants generated in different labs at different times.    208	

  The PPARG classifier annotated as benign nearly all variants (56/57) incidentally 209	

identified in a study of myocardial infarction. The one variant classified as pathogenic with high 210	

confidence (and confirmed by single variant laboratory experiments) was observed in an 211	

individual with hypertriglyceridemia and T2D, and independently observed in a patient with 212	

lipodystrophy, likely indicating FPLD325. In 12/13 cases referred for suspected lipodystrophy or 213	

monogenic diabetes and carrying a PPARG variant, the classifier provided immediate, high 214	
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confidence information regarding the likelihood of a functional defect and a molecular diagnosis 215	

of FPLD3. In only a single case (p.T468K) did the classifier not provide a high confidence 216	

estimate and low-throughput laboratory assays fail to corroborate the pooled assay data13.  217	

Systematic variant construction, pooled experimental characterization in relevant assays, and 218	

statistical integration with epidemiological data offer a generalizable approach to enable 219	

genome interpretation at clinically important genes, reducing overdiagnosis6,9 and diagnostic 220	

uncertainty8. Fully realizing such comprehensive approaches will require a complementary array 221	

of methods26. The PPARG construct library is easily shared so that others can generate and 222	

contribute function scores in other assays27, but as a transgene library it is not ideally suited for 223	

detecting functional effects of coding variation on splicing efficiency. Given the limitations on the 224	

library and because CD36 expression is unlikely to report on all the functions of PPARγ, we 225	

have made the PPARγ classifier available as a web application (http://miter.broadinstitute.org) 226	

that can be updated as new genetic and functional data become available.	Broadening this 227	

approach to other genes and diseases will require cellular assays that read out disease relevant 228	

characteristics, are robust and scalable, and the availability of training sets of pathogenic and 229	

benign variants.  Such assays and variants exist for a number of Mendelian disease genes, 230	

making it possible to apply a similar approach to help interpret VUS for many other clinical 231	

situations.   232	
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Figure Legends 263	

Figure 1. Comprehensive functional testing of 9,595 PPARγ amino acid variants. 264	

a) A library of 9,595 PPARG constructs was synthesized, each construct containing one amino 265	

acid substitution. The construct library was introduced into THP-1 monocytes (edited to lack the 266	

endogenous PPARG gene) such that each cell received a single construct. This polyclonal 267	

population of THP-1 monocytes was differentiated to macrophages and stimulated with PPARγ 268	

agonists (rosiglitazone, PGJ2); the stimulated macrophages were separated via fluoresence 269	

activated cell sorting according to expression of the PPARγ response gene CD36 into low (-) 270	

and high (+) activity bins. Each bin of cells was subject to next-generation sequencing at the 271	

transgenic PPARG locus to identify and tabulate introduced variants. PPARγ variant counts in 272	

the CD36 low and CD36 high bins were used to calculate a functional score for all 9,595 273	

variants. b) Raw PPARγ function scores for each of the 9,595 variants plotted according to 274	

amino acid position along the PPARγ sequence. “Blue” denotes that any amino acid change 275	

away from reference results in low CD36 function score, whereas ”white” denotes that amino 276	

acid changes do not alter function; “grey” denotes the reference amino acid. Function scores 277	

summed by amino acid position are plotted to the right, denoting tolerance for any amino acid 278	

substitution away from reference. 279	

 280	

Figure 2. Integrating experimental function to construct a PPARγ classification table. 281	

a) Raw PPARγ function scores ranked for all 9,595 PPARγ variants tested. Highlighted in red 282	

are raw function scores of known lipodystrophy causing mutations if they reside in the DNA-283	

binding domain (DBD) or in orange if they reside in the Ligand-binding domain (LBD). The 284	
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common P12A variant is shown in blue. b) Mutation tolerance scores as described in Figure1 285	

are shown color-coded and mapped onto the known crystal structure of PPARγ with RXRα, 286	

NCoA and Rosiglitazone. “Red” denotes that amino acid changes away from reference results 287	

in low CD36 function score, whereas ”white” denotes that amino acid changes do not alter 288	

function. c) Raw PPARγ function scores were obtained for 9,595 variants under four 289	

experimental conditions: 1) 1 µM Rosiglitazone, 2) 0.1 µM Rosiglitazone, 3) 10 µM 290	

Prostaglandin J2, and 4) 0.1 µM Prostaglandin J2. The function of known benign (n=13) and 291	

lipodystrophy-causing (n=11) variants are highlighted in blue and red respectively with their 292	

overall distributions overlaid. The raw function scores were combined into an integrated function 293	

score (IFS) after classifier training using linear discriminant analysis (LDA). 294	

 295	

Figure 3. Experimental and clinical classification of novel missense PPARG variants 296	

identified in sequenced individuals. 297	

a) Variants identified in patients plotted according to their integrated function score (IFS) 298	

alongside the IFS distributions of known benign, and lipodystrophy associated variants. b) 299	

Diagnostic classification for Familial Partial Lipodystrophy 3 (FPLD3) expressed as posterior 300	

probability of non-pathogenicity of PPARG variants shown in (a). Posterior probability was 301	

calculated by combining IFS with prevalence of lipodystrophy in the general population 302	

(1:100,000) or from patients referred for lipodystrophy/familial diabetes (1:7). c) The variants 303	

identified in patients were individually recreated and tested for their ability to activate luciferase 304	

reporter constructs containing three, tandemly-repeated, copies of the PPRE from the Acyl-CoA 305	

oxidase gene linked to the thymidine kinase promoter under varying doses of pharmacologic 306	

(rosiglitazone) or endogenous (prostaglandin J2; PGJ2) ligands (mean +/- S.E.M n =5). Variants 307	

are grouped according to not-pathogenic/pathogenic designation in (b). 308	

 309	
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Figure 4 Ability of PPARγ p.R212W to transactivate gene expression and bind DNA at 310	

endogenous enhancers 311	

a) Ability of PPARγ2 WT or R212W mutant to activate luciferase reporter constructs containing 312	

FABP4 promoter under varying doses of pharmacologic (rosiglitazone 0-1µM) or endogenous 313	

(prostaglandin J2; PGJ2 0-10µM) ligands (mean +/- S.E.M n = 5). b) Comparison of the DNA 314	

binding properties of in vitro translated wild type or mutant PPARγ proteins, tested in 315	

electrophoretic mobility shift assays using either γ1 (R184W) or γ2 (R212W) mutants and 316	

radiolabelled PPREs from the acyl coenzyme A oxidase (AcCoA: 5’ ggaccAGGA- 317	

CAaAGGTCAcgtt 3’ ), fatty acid binding protein 4 (FABP4: 5’aaacaCAGGCAaAGGTCAgagg 3’) 318	

or muscle carnitine palmitoyl transferase 1 (CPT1: 5’ atcggTGACCTtTTCCCTaca 3’) promoters 319	

with retinoid X receptor (RXR) and increasing concentrations of ligand (Rosiglitazone 0 to 320	

10uM). RL, reticulocyte lysate. c) PPARγ colored by mutation tolerance scores obtained under 321	

stimulation with 1µM Rosiglitazone in THP-1 cells. As in Figure 2b, red represents sites that 322	

exhibited low CD36 response when mutated away from WT. Arginine 212 is highlighted which 323	

occurs in the ‘hinge’ region of PPARγ connecting the DNA binding and ligand binding domains. 324	

The positively charged arginine side chain extends into the minor groove of DNA forming 325	

multiple hydrogen bonds with bases. 326	

 327	

Figure 5. Relationship of PPARγ function to T2D risk in the general population.  328	

a) Missense PPARγ variants identified from 19,752 sequenced type 2 diabetes (T2D) 329	

case/controls plotted according to IFS (integrated functional score) from the PPARγ 330	

classification table alongside the IFS distributions of known benign, and lipodystrophy 331	

associated variants. Each point represents a missense variant; point size denote the number of 332	

individuals carrying that variant. Among the 118 individuals carrying missense PPARγ variants 333	

T2D cases contained a long tail of low-functioning missense variants, which was notably absent 334	

from the distribution of variants observed in T2D controls (p = 0.024 two-sample Kolmogorov-335	
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Smirnov test). b) When the same 118 individuals were plotted according to computational 336	

prediction of deleteriousness no difference is distributions of functional variants is seen among 337	

T2D cases vs controls (p > 0.1 two-sample Kolmogorov-Smirnov test). c) Scatterplot of IFS vs 338	

computational prediction scores for PPARγ missense variants from T2D case/controls as 339	

described above. 340	
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A library of all 9,595 possible single amino acid variants in PPARG was synthesized using a 418	

site-directed, multiplexed method (Mutagenesis by Integrated TilEs (MITE)28) adapted to render 419	

it suitable for saturation mutagenesis in mammalian cells. Detail is provided below where 420	

methodologic advancements were made permitting saturation mutagenesis of PPARG. First, 421	

the PPARG cDNA sequence (CCDS2609.1) was recoded (see Supplementary Table 4) to 422	

eliminate susceptibility to restriction enzymes and CRISPR/CAS9 targeting sgRNAs (see below) 423	

to enable a “delete and replace” strategy. As described previously, DNA oligonucleotides were 424	

synthesized on a programmable microarray, each oligonucleotide encoding a desired amino 425	

acid change but otherwise homologous to the template un-mutated PPARG in all other 426	

respects. Oligonucleotides were organized into ‘tiles’, where those within each tile differ in a 427	

central variable region but share identical 5’ and 3’ ends (see Supplementary Table 4). Tiles 428	

were staggered such that their variable regions collectively span the entire template. To ensure 429	

uniform amplification and reduce chimera formation for the longer PPARG template, the 430	

protocol was modified to amplify each tile by emulsion PCR (MICELLULA DNA Emulsion & 431	

Purification Kit; EURx). The resulting products were inserted into linearized plasmids (Phusion® 432	

High-Fidelity DNA Polymerase NEB M0530) that carry the remaining template sequence using 433	

multiplexed Gibson assembly (NEBuilder® HiFi DNA Assembly Master Mix, NEB, cat E2621L) 434	

according to the manufacturer’s protocol. A “frameshift cleaning” procedure was introduced 435	

given that the most common error mode during library construction (25-30% of constructs; data 436	

not shown) resulted from oligo synthesis errors causing 1-2 bp indels. The PPARG template 437	

vector was designed such that all PPARG constructs terminated with amber stop codons (i.e. 438	

TAG) and bore an in-frame zeocin resistance cassette (pUC57-PPARG-zeo; GenScript). 439	

Constructs bearing frame-shifting indels were depleted by transforming into an amber 440	

suppressor cloning host (TG1, Lucigen) and selecting the construct library under zeocin and 441	

kanamycin dual selection. Library plasmids were purified from >106 colonies to preserve 442	

complexity and the frameshift depleted PPARG transgenes excised from the zeocin resistance 443	
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cassette. To enable mammalian cell transduction, the transgene library was transferred into a 444	

lenti-viral expression vector by simple restriction cloning and transfected into a packaging cell 445	

line to produce pooled lenti-virus according to standard protocols (pLXI_TRC401; 446	

http://www.broadinstitute.org/rnai/public/resources/protocols)5.  447	

 448	

Deletion of endogenous PPARG in THP-1 monocytes using CRISPR/CAS9 449	

 The endonuclease Cas9 and sgRNAs targeting exon 6 of PPARG 450	

(CCCAAACCTGATGGCTATAG) and exon 8 of a control gene, PHACTR1 451	

(CTATCATTCTGCAGCCCGAG), were introduced into THP1 cells by lenti-viral transduction. To 452	

quantify modification of the endogenous gene, genomic DNA was extracted at multiple time 453	

points, amplified by PCR around the PPARG sgRNA target site (forward primer: 454	

GGAGAGCACAGT, reverse primer: AATCCAGAGTCCGCTGACCT) and Sanger sequenced. 455	

Cutting efficiency was determined using the TIDE web tool for decomposition analysis of the 456	

sequencing traces29.  457	

 Twenty-one days after transduction of CRISPR/Cas9 with PPARG or control sgRNAs, 458	

cells were tested for PPARG response by gene (FABP4) and protein (CD36) expression to 459	

validate lack of functional endogenous PPARG. PPARG targeting sgRNA and control sgRNA 460	

treated THP1 cells were stimulated with 1 µM  Rosiglitazone in THP1 growth media (RPMI 1640 461	

+ 10% heat-inactivated FBS + 1% PenStrep + 0.1% BME) for 72 hours. mRNA was then 462	

extracted and quantified for FABP4 gene expression(nanoString Technologies). For CD36 463	

protein expression, THP1 cells were stimulated with 50 ng/mL PMA and 1 µM of Rosiglitazone 464	

in growth media for 72 hours. Cells were then detached from the plate, washed and stained with 465	

a monoclonal antibody to CD36 according to the manufacturer’s protocol (Miltenyi 130-100-149) 466	

and subjected to flow cytometry. 467	

 468	

Simultaneous testing of 9,595 PPARG variants in experimental assays 469	



	 19	

The PPARG construct library was introduced into a human monocytic cell line (THP-1: obtained 470	

from http://www.broadinstitute.org/achilles and tested mycoplasma negative) engineered 471	

through CRISPR/CAS9 to lack endogenous PPARG (Supplementary Figure 2) by pooled 472	

infection. While isoform 1 of PPARG is dominantly expressed in monocyte/macrophages, we 473	

expressed isoform 2, which is identical in sequence but encodes a protein with an additional 28 474	

N-terminal amino acids. Both isoforms demonstrated identical ligand dependent activity. The 475	

pooled virus was diluted such that the multiplicity of infection (number of viral particles per cell) 476	

was 0.3 so that each monocyte would receive zero or a single PPARG variant. Uninfected cells 477	

were eliminated by selection with puromycin 2 µg/mL. Expression of the PPARG transgene was 478	

controlled by a doxycycline inducible promoter5. At least 107 cells were infected to ensure that 479	

each PPARG variant was independently represented in 1000 monocytes. The resulting 480	

polyclonal population of THP-1 monocytes containing the PPARG variant library was stimulated 481	

for 72 hours with 1) 50 µM phorbol ester (PMA) to induce differentiation into macrophages, 2) 482	

doxycycline 1 µg/mL to induce expression of PPARG constructs, and 3) low/high doses (based 483	

on ranges used in prior studies 13) of thiazolidinedione (Roziglitazone 0.1 µM/1 µM) or proposed 484	

natural ligand30 (Prostaglandin J2 (PGJ2) 0.1 µM/10 µM) to stimulate PPARG activity. The 485	

population of stimulated THP-1 macrophages was immuno-stained for CD36 (Miltenyi:	130-095-486	

472), a cell surface protein that is a direct transcriptional target of PPARG 15. Using 487	

fluorescence activated cell sorting, stained cells were grouped into two activity bins separated 488	

by at least 5-10 fold expression of CD36 and selected to encompass equal numbers of cells 489	

(Supplementary Figure 3). For each stimulation condition, at least three replicates were 490	

generated, each with at least 5×106 cells sorted. To re-identify and quantitate the PPARG 491	

variants in the CD36 ‘high’ and ‘low’ bins, genomic DNA was extracted from the cells in each bin 492	

and the integrated proviral PPARG transgenes amplified by PCR and shotgun sequenced 493	

(Nextera, Illumina). Raw sequencing reads were aligned to the reference PPARG cDNA 494	
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sequence (see Supplementary Table 4) and the number of occurrences of each amino acid at 495	

each position along the coding region counted and tabulated with a custom aligner. To minimize 496	

erroneous mutation calls, only codons that matched designed mutations and consisted of high 497	

quality base calls (Phred score > 30) were tabulated. Over 99 percent of the designed amino 498	

acid substitutions were observed at least 50 times for a given experimental condition (see 499	

Supplementary Figure 1). A raw function score was calculated based on the ratio of observed 500	

frequencies of each mutant amino acid in the two CD36 activity bins (see Figure 1). 501	

 502	

Calculation of raw function score 503	

Control experiments showed that variants deleterious to PPARG function were enriched in the 504	

CD36 low fraction and benign variants enriched in the CD36 high fraction. We constructed a 505	

likelihood function based on the log-odds of an amino acid variant in the CD36 high and low 506	

fractions. The log-odds for each amino acid variant was estimated by maximizing a likelihood 507	

function based on the observed counts of each amino acid variant in the CD36 high and low 508	

fractions as well as the total read depth at that amino acid position. Data were combined across 509	

experimental replicates after determining replicate variability (see Supplementary Figure 4). To 510	

avoid spuriously high or low log-odds estimates for any given variant, we constrained the log-511	

odds estimate with a Gaussian prior whose parameters were estimated from data combined 512	

across all variants. See “Supplemental Note: Supplementary Analytic Methods” for detailed 513	

specification. 514	

 515	

Construction of a PPARG classifier by supervised machine learning 516	

To predict the likelihood of novel variants being benign and pathogenic, we developed a 517	

classifier based on raw function scores obtained across various experimental conditions. The 518	

synthesis of multiple experimental conditions was intended to span a greater range of possible 519	

activities of PPARγ than would be queried using a single condition. Specifically, we used linear 520	
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discriminant analysis (MASS package in R 3.0) to train the classifier, adopting a two-class 521	

model. The model incorporates as parameters (a) raw function scores for each PPARγ variant 522	

as measured across the four experimental conditions (i.e. rosiglitazone (Rosi) and 523	

Prostaglandin J2 (PGJ2) at high and low doses) and (b) mutation tolerance scores calculated 524	

for each position in PPARG as measured across the four experimental conditions (see Figure 525	

1B). Potential classifiers were systematically constructed on linear combinations of four of these 526	

eight parameters, with a requirement that one parameter be included from each experimental 527	

condition. Classifier models were built for each the 16 possible combinations of four parameters 528	

using a training set of pathogenic and benign PPARγ variants (see Supplementary Table 1). 529	

Pathogenic variants used to train the classifier were selected based on (a) segregation with 530	

FPLD3 and (b) prior demonstration of loss-of-function in cellular assays. Benign variants used to 531	

train the classifier were selected from among variants identified in 60,706 aggregated exome 532	

sequences20 at an allele frequency rendering them very unlikely to be causal for FPLD3 under a 533	

dominant model of inheritance and prevalence estimate ranging from 1:100,000 to 1:1,000,000 534	

(P<0.05 1-tailed binomial probability n=121,412 chromosomes, p=10-5) (see Supplementary 535	

table 1). The performance of these 16 models was compared using a leave-one-out cross-536	

validation (LOOCV) protocol with each model scored by its aggregate ability to correctly classify 537	

the “left-out” variant over all the cycles of LOOCV. The highest scoring model consisted of raw 538	

function scores for each possible variant obtained from three conditions (Rosi 1µM, Rosi 0.1µM, 539	

PGJ2 10µM) and mutation tolerance score for each position in PPARG obtained from PGJ2 540	

0.1µM. This model was fit to the full training dataset for prospective evaluation of novel PPARG 541	

variants. The weighted sum of the four parameters in the final model, as fit by the LDA 542	

algorithm, is denoted as the integrated function score (IFS) (see Figure 2C and Supplementary 543	

Figure 5) and represents an aggregate measure of variant function over the four experimental 544	

conditions. For clinical prediction, the IFS was expressed as an odds (benign:pathogenic), 545	
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which when multiplied by the estimated prior odds of FPLD3 based on the clinical situation (i.e. 546	

prevalence) yielded an estimated probability of pathogenicity. Because the final model was 547	

trained on the full set of available pathogenic and benign variants, its performance next required 548	

prospective evaluation on a completely independent set of variants. These variants were 549	

obtained from the population and clinic data described below, and evaluated as described in 550	

Figure 3.   551	

 552	

Missense PPARG variants identified in population based exomes and clinically referred 553	

individuals  554	

 The study was conducted in accordance with the Declaration of Helsinki, and approved 555	

by research ethics committees; written informed consent was obtained from all participants.  556	

 Missense PPARG variants were extracted from 22,106 exomes (8,400 with early-onset 557	

coronary artery disease and 12,804 controls) sequenced by the Myocardial Genetics 558	

Consortium (MIGEN) as described elsewhere21. Study participants were ascertained from the 559	

following studies: ATVB, DHM, DUKE, JHS, ESP-EOMI, MedStar, OHS, PennCath, 560	

PROCARDIS, PROMIS, and REGICOR. Participants were of European ancestry (n=12,849; 561	

58%), Asian ancestry (n=6,823; 31%), African ancestry (n=2,399; 11%), and “other or unknown” 562	

self-reported ethnicity (n=34; 0.2%). Twenty-two percent (n=4,258) reported a diagnosis of T2D.  563	

 Patients were referred to one of two UK centers (Cambridge: www.cuh.org.uk/national-564	

severe-insulin-resistance-service or Exeter: www.diabetesgenes.org) which specialize in 565	

syndromes of severe insulin resistance and/or monogenic forms of diabetes. In clinically 566	

suspected FPLD3 cases, mutations in PPARG were identified in genomic DNA extracted from 567	

peripheral-blood leukocytes using PPARG amplification and sequencing. In patients for whom 568	

FPLD3 was not the primary clinical diagnosis, PPARG was sequenced as part of a targeted 569	

next-generation panel of 29 genes31 selected to improve diagnostic yield for suspected 570	

monogenic diabetes. Mutations were confirmed in index patients and, where possible, from 571	
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family members. In all instances, the nomenclature used for missense variants is for isoform 2 572	

of PPARG (transcript accession: NM_015869.4; protein accession: NP_056953.2). 573	

 574	

Individual testing of PPARG variant function by transcriptional activity 575	

 The novel variants identified in patients with suspected familial lipodystrophy or diabetes 576	

were characterized using a well-established PPARG reporter containing three, tandemly-577	

repeated, copies of the PPRE from the Acyl-CoA oxidase (AcCoA: 5’ 578	

ggaccAGGACAaAGGTCAcgtt 3’) gene upstream of the thymidine kinase (TK) promoter and 579	

luciferase. In brief, 293EBNA cells, cultured in DMEM/10%FCS were transfected with 580	

Lipofectamine2000 in 24-well plates and assayed for luciferase and β-galactosidase activity as 581	

described previously13 following a 36-hour incubation with or without ligand. 582	

 583	

 584	
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Supplementary Table 1: Known variants used to train PPARG classification table and novel 
PPARG variants incidentally identified from 22,106 exomes 

PPARG Variant  Classification 

P12A  classifier training:benign 
V276I  classifier training:benign 
I331V  classifier training:benign 
V335L  classifier training:benign 
L361F  classifier training:benign

I437V  classifier training:benign 
I45F  classifier training:benign 
P454A  classifier training:benign 
V48L  classifier training:benign 
K486T  classifier training:benign 
V52I  classifier training:benign 
D55V  classifier training:benign 
E79K  classifier training:benign

C142R  classifier training:lipodystrophy 
Y151C  classifier training:lipodystrophy 
C159Y  classifier training:lipodystrophy 
R165T  classifier training:lipodystrophy 
C190S  classifier training:lipodystrophy 
C190W  classifier training:lipodystrophy 
R194W  classifier training:lipodystrophy 
V318M  classifier training:lipodystrophy

R425C  classifier training:lipodystrophy 
P495L  classifier training:lipodystrophy 
S104R  novel exome sequencing 
D11Y  novel exome sequencing 
S117A  novel exome sequencing 
Q121R  novel exome sequencing 
N132S  novel exome sequencing 
S14G  novel exome sequencing

V141I  novel exome sequencing 
K170N  novel exome sequencing 
R181G  novel exome sequencing 
R194Q  novel exome sequencing 
I208V  novel exome sequencing 
N233S  novel exome sequencing 
P234S  novel exome sequencing 
R240Q  novel exome sequencing

L246M  novel exome sequencing 
A263V  novel exome sequencing 
F292L  novel exome sequencing 
T296N  novel exome sequencing 
R308H  novel exome sequencing 
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Variant numbering is with respect to amino acid position on PPARG isoform 2 
  

V335I  novel exome sequencing 
V350G  novel exome sequencing 
M357V  novel exome sequencing 
M36T  novel exome sequencing 
N363S  novel exome sequencing
I369M  novel exome sequencing

R385Q  novel exome sequencing 
W39R  novel exome sequencing 
T41A  novel exome sequencing 
S410G  novel exome sequencing 
F43L  novel exome sequencing 
I434V  novel exome sequencing 
I437V  novel exome sequencing
V48L  novel exome sequencing

T487M  novel exome sequencing 
S51F  novel exome sequencing 
D55V  novel exome sequencing 
I62N  novel exome sequencing 
I62V  novel exome sequencing 
T84P  novel exome sequencing 
D92N  novel exome sequencing
K94E  novel exome sequencing

K98T  novel exome sequencing 
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Supplementary Table 2. Biochemical Findings In Patients With Confirmed PPARG Mutations ascertained 

from targeted/exome sequencing. 

	
PPARG 
mutation 

Glu54Gln Asp92Asn Arg194Gln Asp230Asn Arg385Gln Normal 
range 

Clinical 
phenotype 

Laurence-Moon-
Biedl syndrome 

Early onset 
diabetes in 
lean adult 

unascertained Morbidly 
obese with 

possible limb 
lipodystrophy 

Partial 
lipodystrophy 

unascertained  

Gender Male Male Female Female Female Female  

Age at time 
of 

assessment 
- yr 

40 34 58 63 38 61  

Age at first 
presentation 

- yr 

36 27 58 60 23 61  

        

Height – m 1.68 1.78 1.55 NA 1.85 1.65  

Weight – kg 154 61.8 58 NA 93.9 64.5  

BMI* - 
kg/m2 

54 20 24 43 27 24  

        

Hypertensio
n 

Yes No Yes NA Yes Yes  

T2DM or 
IGT¶ 

Yes Yes Yes Yes Yes No  

PCOS§ No No NA NA Yes NA  

NAFLD♯ Yes (US) No NA NA Yes (US) NA  

        

Triglyceride 
- mg/dL 

327 168 613 133 230 ** <200 

HDL-
Cholesterol 

- mg/dL 

39 66 30 60 31 ** >40 

Total-
Cholesterol 

- mg/dL 

143 154 225 143 131 ** <150 

        

Glycated 
hemoglobin 
-mmol/mol 

62 140 NA 53 53 NA 20-41 

        

***Functional 
score*** 

1.679 1.381 -5.938 0.568 -1.416  

NA denotes not available. 

*The body-mass index (BMI) is the weight in kilograms divided by the height squared 

** Treated hyperlipidemia 

of the height in meters. 

***Functional score as derived from http://miter.broadinstitute.org/ 
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¶Type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT) – yes or no indicates the presence 

or absence of either of these conditions. 

§Polycystic ovary syndrome (PCOS) - yes or no indicates the presence or absence of this syndrome. 

 

♯Non-alcoholic fatty liver disease (NAFLD) – yes or no indicates presence of absence as confirmed by 

biopsy or ultrasound(US). 

To convert the values for triglycerides to millimoles per liter multiply by 0.0113. To convert the values for 

cholesterol and HDL to millimoles per liter multiply by 0.0259. 

Fatty liver was assessed by ultrasound.  
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Supplementary Table 3. Biochemical Findings In Patients With A Clinical Diagnosis Of Suspected  

Familial Partial Lipodystrophy Type 3 (FPLD3) And With Confirmed PPARG Mutations.  

PPARG 
mutation 

Met31Leu Arg194Gln Met203Ile Arg212Trp Arg308Pro Thr356Arg Pro387Ser Ala417Val Thr468Lys Normal 
range 

Gender Female Female Female Female Female Female Female Female Female  

Age at time of 
assessment 

- years 

56 46 17 31 16 19 13 40 15  

Age at first 
presentation 

- years 

24 24 10 15 16 19 8 39 7  

           

Height – m 1.83 1.72 1.54 1.63 1.46 1.85 1.49 1.56 1.78  

Weight – kg 110.7 71.8 60.9 74.5 48.0 118.6 43.6 87.5 98.0  

BMI* - kg/m2 33 24 26 28 23 34 20 36 31  

           

Fat 
distribution 

Central obesity 
with limb and 
femorogluteal 
lipodystrophy 

Limb and 
femorogluteal 
lipodystrophy 

Limb and 
femorogluteal 
lipodystrophy 

Limb and 
femorogluteal 
lipodystrophy 

Limb and 
femorogluteal 
lipodystrophy 

Central obesity 
with limb and 
femorogluteal 
lipodystrophy

Limb and 
femorogluteal 
lipodystrophy 

Central obesity 
with limb and 
femorogluteal 
lipodystrophy

Central obesity 
with limb and 
femorogluteal 
lipodystrophy

 

Total body fat 
- % 

NA NA 30 21 20 41 NA NA NA  

Predicted 
body fat - %** 

42 29 31 34 27 43 NA NA NA  

Truncal fat - 
% 

NA NA 35 25 22 47 NA NA NA  

Leg fat - % NA NA 28 15 18 32 NA NA NA  

Fat mass 
ratio*** 

NA NA 1.25 1.67 1.22 1.47 NA NA NA >1.2  

           

Hypertension Yes Yes No Yes No No No No Yes  

T2DM or 
IGT¶ 

Yes Yes Yes Yes Yes Yes Yes Yes Yes  

PCOS§ Yes Yes Yes Yes Yes Yes Yes Yes NA  

NAFLD♯ Yes (US) Yes 
(biopsy) 

Yes (US) 12 (MRS) Yes (US) 18 (MRS) Yes Yes (US) NA <5 
(MRS) 

           

Triglyceride 
- mg/dL 

221 5106 5000 212 1168 434 150 593 965 <150 

HDL-
Cholesterol 

- mg/dL 

39 35 NA 19 15 15 46 35 31 >40 
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Total-
Cholesterol 

- mg/dL 

135 544 981 151 181 158 212 201 NA <200 

           

Insulin 
- pmol/L 

240 128 177 306 405 476 160 165 310 <60 

Glucose 
- mg/dL 

111.7 304.5 122.5 82.9 131.5 120.7 66.7 167.6 94.5 <110 

Glycated 
hemoglobin 
-mmol/mol 

49 94 48 37 61 44 44 68 66 20-41 

HOMA IR§§ 4.50 3.86 3.45 5.24 7.46 7.35 2.67 3.44 5.49 <1.18 

HOMA %S 22.2 25.9 29.0 19.1 13.4 13.6 37.5 29.1 18.2 100 

           

Leptin - ug/L 18.7 4.3 5.4 5.2 NA 22.6 NA 18.7 NA 2.4-60.2 

Adiponectin 
- mg/L 

3.5 2.5 4.0 0.8 NA 2.9 NA 2.1 NA 2.6-17.7 

           

Familial co-
segregation 

Obese 
daughter with 

PCOS is 
mutation 
negative. 

Affected 
sibling is 
mutation 
positive 

Unaffected 
mother is 
mutation 

negative and 
father with 
high fasting 
insulin level 
is mutation 

positive 

NA Unaffected 
mother and 
sibling are 
mutation 
negative 

Affected 
father is 
mutation 
positive 

Father with 
high 

triglycerides 
is mutation 

positive 

NA Mother with 
gestational 
diabetes is 
mutation 
positive 

 

****Functiona
l score 

2.085 -6.267 -3.982 -4.598 -0.932 -3.823 -4.211 -5.068 -2.516  

 
NA denotes not available. Biochemical tests were all done after an overnight fast. 

*The body-mass index (BMI) is the weight in kilograms divided by the square 
of the height in meters. 

**Predicted body fat = (1.48*BMI)-7 

***Fat mass ratio (FMR) is the trunk fat % divided by the leg fat %. FMR>1.2 in women is consistent with lipodystrophy, though not diagnostic 

in itself. 

¶Type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT) – yes or no indicates the presence or absence of either of these conditions. 

§Polycystic ovary syndrome (PCOS) - yes or no indicates the presence or absence of this syndrome. 
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♯Non-alcoholic fatty liver disease (NAFLD) – yes or no indicates presence of absence as confirmed by biopsy, ultrasound(US) or nuclear 

magnetic resonance spectroscopy (MRS) which is expressed as a ratio of the CH2/(CH2 + water) values.  

§§HOMA IR (Homeostatic model assessment) and HOMA %S (% sensitivity) were calculated using the Oxford Homa Calculator 

https://www.dtu.ox.ac.uk/homacalculator/. Note that this calculator does not accept insulin values >400 pmol/L so in cases where fasting insulin 

levels were >400 pmol/L, we defaulted to 400 pmol/L. The HOMA estimates will thus over-estimate insulin sensitivity in these patients. 

****Functional score as derived from http://miter.broadinstitute.org/ 

 

 

To convert the values for glucose into millimoles per liter multiply by 0.0555. To convert the values for insulin to microinternational units per 

milliliter divide by 6.945. To convert the values for triglycerides to millimoles per liter multiply by 0.0113. To convert the values for cholesterol 

and HDL to millimoles per liter multiply by 0.0259. 

Fatty liver was assessed by ultrasound.  
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Supplementary Table 4: Template and Primer sequences for Mutagenesis by Integrated Tiles 
PPARG recoded 
cDNA template 

ATGGGCGAGACCCTGGGCGACAGCCCCATCGACCCCGAGAGCG
ACAGCTTCACCGACACCCTGAGCGCCAACATCAGCCAGGAGATG
ACCATGGTGGACACCGAGATGCCCTTCTGGCCCACCAACTTCGG
CATCAGCAGCGTGGACCTGAGCGTGATGGAGGACCACAGCCACA
GCTTCGACATCAAGCCCTTCACCACCGTGGACTTCAGCAGCATCA
GCACCCCCCACTACGAGGACATCCCCTTCACCCGCACCGACCCC
GTGGTGGCCGACTACAAGTACGACCTGAAGCTGCAGGAGTACCA
GAGCGCCATCAAGGTGGAGCCCGCCAGCCCCCCCTACTACAGC
GAGAAGACCCAGCTGTACAACAAGCCCCACGAGGAGCCCAGCAA
CAGCCTGATGGCCATCGAGTGCCGCGTGTGCGGCGACAAGGCC
AGCGGCTTCCACTACGGCGTGCACGCCTGCGAGGGCTGCAAGG
GCTTCTTCCGCCGCACCATCCGCCTGAAGCTGATCTACGACCGC
TGCGACCTGAACTGCCGCATCCACAAGAAGAGCCGCAACAAGTG
CCAGTACTGCCGCTTCCAGAAGTGCCTGGCCGTGGGCATGAGCC
ACAACGCCATCCGCTTCGGCCGCATGCCCCAGGCCGAGAAGGA
GAAGCTGCTGGCCGAGATCAGCAGCGACATCGACCAGCTGAACC
CCGAGAGCGCCGACCTGCGCGCCCTGGCCAAGCACCTGTACGA
CAGCTACATCAAGAGCTTCCCCCTGACCAAGGCCAAGGCCCGCG
CCATCCTGACCGGCAAGACCACCGACAAGAGCCCCTTCGTGATC
TACGACATGAACAGCCTGATGATGGGCGAGGACAAGATCAAGTT
CAAGCACATCACCCCCCTGCAGGAGCAGAGCAAGGAGGTGGCC
ATCCGCATCTTCCAGGGCTGCCAGTTCCGCAGCGTGGAGGCCGT
GCAGGAGATCACCGAGTACGCCAAGAGCATCCCCGGCTTCGTGA
ACCTGGACCTGAACGACCAGGTGACCCTGCTGAAGTACGGCGTG
CACGAGATCATCTACACCATGCTGGCCAGCCTGATGAACAAGGA
CGGCGTGCTGATCAGCGAGGGCCAGGGCTTCATGACCCGCGAG
TTCCTGAAGAGCCTGCGCAAGCCCTTCGGCGACTTCATGGAGCC
CAAGTTCGAGTTCGCCGTGAAGTTCAACGCCCTGGAGCTGGACG
ACAGCGACCTGGCCATCTTCATCGCCGTGATCATCCTGAGCGGC
GACCGCCCCGGCCTGCTGAACGTGAAGCCCATCGAGGACATCCA
GGACAACCTGCTGCAGGCCCTGGAGCTGCAGCTGAAGCTGAACC
ACCCCGAGAGCAGCCAGCTGTTCGCCAAGCTGCTGCAGAAGATG
ACCGACCTGCGCCAGATCGTGACCGAGCACGTGCAGCTGCTGCA
GGTGATCAAGAAGACCGAGACCGACATGAGCCTGCACCCCCTGC
TGCAGGAGATCTACAAGGACCTGTAC 

Tile amplification primers 
NR1C3_A1_amF GTGGTGGAATTCTGCAGATATGC 
NR1C3_B1_amF TTCTGGCCCACCAACTTCGGCAT 
NR1C3_A2_amF ACCCGCACCGACCCCGTGGTGGC 
NR1C3_B2_amF CCCAGCAACAGCCTGATGGCCAT 
NR1C3_A3_amF TGCGACCTGAACTGCCGCATCCA 
NR1C3_B3_amF CTGGCCGAGATCAGCAGCGACAT
NR1C3_A4_amF AAGACCACCGACAAGAGCCCCTT
NR1C3_B4_amF CAGTTCCGCAGCGTGGAGGCCGT 
NR1C3_A5_amF AGCCTGATGAACAAGGACGGCGT 
NR1C3_B5_amF GAGCTGGACGACAGCGACCTGGC 
NR1C3_A6_amF CCGAGAGCAGCCAGCTGTTCGCC 
NR1C3_A1_amR TGGCTGTGGTCCTCCATCACGCT 
NR1C3_B1_amR CTCTGGTACTCCTGCAGCTTCAG 
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NR1C3_A2_amR TGGAAGCCGCTGGCCTTGTCGCC 
NR1C3_B2_amR TGGAAGCGGCAGTACTGGCACTT 
NR1C3_A3_amR AGGGCGCGCAGGTCGGCGCTCTC 
NR1C3_B3_amR TCCTCGCCCATCATCAGGCTGTT 
NR1C3_A4_amR AAGCCGGGGATGCTCTTGGCGTA 
NR1C3_B4_amR AACTCGCGGGTCATGAAGCCCTG 
NR1C3_A5_amR GGGCGGTCGCCGCTCAGGATGAT
NR1C3_B5_amR TGGCGCAGGTCGGTCATCTTCTG
NR1C3_A6_amR AGGTCAGCAGGGACCCCCTTCCC 
Template linearization primers 
NR1C3_A1_lnF CATGGTGGCATATCTGCAGAATT 
NR1C3_B1_lnF GCTGCTGATGCCGAAGTTGGTGG 
NR1C3_A2_lnF GTAGTCGGCCACCACGGGGTCGG 
NR1C3_B2_lnF GCACTCGATGGCCATCAGGCTGT 
NR1C3_A3_lnF CTTCTTGTGGATGCGGCAGTTCA 
NR1C3_B3_lnF CTGGTCGATGTCGCTGCTGATCT 
NR1C3_A4_lnF GATCACGAAGGGGCTCTTGTCGG
NR1C3_B4_lnF CTCCTGCACGGCCTCCACGCTGC
NR1C3_A5_lnF GATCAGCACGCCGTCCTTGTTCA 
NR1C3_B5_lnF GAAGATGGCCAGGTCGCTGTCGT 
NR1C3_A6_lnF GGCGAACAGCTGGCTGCTCTCGG 
NR1C3_A1_lnR GGACCTGAGCGTGATGGAGGACC 
NR1C3_B1_lnR GTACGACCTGAAGCTGCAGGAGT 
NR1C3_A2_lnR CGTGTGCGGCGACAAGGCCAGCG 
NR1C3_B2_lnR CCGCAACAAGTGCCAGTACTGCC 
NR1C3_A3_lnR GAACCCCGAGAGCGCCGACCTGC
NR1C3_B3_lnR CGACATGAACAGCCTGATGATGG
NR1C3_A4_lnR CACCGAGTACGCCAAGAGCATCC 
NR1C3_B4_lnR CGAGGGCCAGGGCTTCATGACCC 
NR1C3_A5_lnR CGCCGTGATCATCCTGAGCGGCG 
NR1C3_B5_lnR GCTGCTGCAGAAGATGACCGACC 
NR1C3_A6_lnR GGGAAGGGGGTCCCTGCTGACCT 

 



 
 

Supplementary Figure 1 

PPARγ variant library completeness and uniformity 

After transduction into THP1 macrohages, cell sorting and transgene recovery, the library of 9,595 PPARγ variant transgenes was 
shotgun sequenced (Nextera- Illumina) to assess completeness and balance. A) For each amino acid position along the PPARγ2



 
 

protein, the number of observed amino acid changes out of the 19 possible changes was quantified; 99.3% of the total 9,595 possible 
missense variants were observed. B) The distribution of missense variant frequency is plotted by position along the PPARγ2 protein.
No single variant comprised more than 0.9% of the variant construct library. C) The cumulative distribution of counts observed for each 
variant is shown. 



 
 

 

	 	
Supplementary Figure 2 

Deletion of endogenous PPARG in THP-1 monocytes  

Endogenous PPARG was deleted in THP-1 monocytes by lentivirus-transduced CRISPR-Cas9. WT THP-1 cells were transduced with 
CRISPR-Cas9 and an sgRNA targeting either exon 6 of PPARG (NM_015869.4) or exon 8 of a control gene, PHACTR1. Samples of
the resulting cell populations were collected at various time points. A) Percent of genomic DNA sequences with indels in PPARG over 
time. PPARG modification appears to saturate by the 10th day after introduction of CRISPR-Cas9. B) FABP4 gene expression assayed 
by nCounter in THP-1 cells stimulated with Rosiglitazone for 3 days. C) Cell surface CD36 protein expression in THP-1 cells stimulated 
with Rosiglitazone. Cells were treated with Rosiglitazone for 3 days, stained with PE-conjugated CD36 and subjected to flow cytometry. 
The response of WT cells is shown in the top panel and the response of PPARG CRISPR treated cells is shown in the bottom panel. 



 
 

Supplementary Figure 3 

Sorting of PPARγ variants by CD36 activity 

The library of 9595 PPARγ variant transgenes was introduced into a THP-1 cell line deleted for endogenous PPARγ. These cells 
expressed CD36 at a background level as shown (dashed red lines). Upon stimulation with PPARγ agonists (Rosiglitazone/PGJ2), a
shift in the distribution of CD36 expression is seen (shaded blue lines). WT PPARγ was introduced into a separate population of 
PPARγ-/- THP-1 cells and stimulated with the same PPARγ agonists as above. The distribution of CD36 expression in cells bearing
only WT PPARγ transgenes is shown (green dashed lines). The stimulated population of THP-1 cells containing the PPARγ transgene 
library was sorted by FACS into two subpopulations based on CD36 activity (red and green shaded areas). CD36 activity bins were
selected to contain equal proportions of the shaded blue distribution and to be separated by a 5-10 fold difference in CD36 activity. 



 
 



 
 



 
 



 
 



 
 



 
 

Supplementary Figure 4 

Replicate variability from simultaneous testing of 9,595 PPARG variants. 

(A, B, C, D) Pairwise hexbin scatterplots and correlation coefficients of log2(CD36+/ CD36-) counts for FACS sorting, sequencing and 
counting of each PPARγ variant in the library stimulated with A) Rosiglitazone 1uM B) PGJ2 0.1uM C) Rosiglitazone 0.1uM and D)
PGJ2 10uM. The elements of each row/column represent an independent sorting run into CD36+ and CD36- fractions performed on the 
same day. For each variant the log2 ratio of the coverage corrected counts in the CD36+ and CD36- bins is plotted. D) Pairwise hexbin
scatterplot and correlation coefficient of raw function scores from two separate transductions of THP-1 cells with the PPARγ variant 
library, followed by Rosiglitazone stimulation, FACS sorting, sequencing and counting as above. The raw function scores plotted on 
each axis represent the synthesis of multiple sorting runs (A: all panels) (see Methods) and correspond to log2(CD36+/CD36-) counts 
for a single sorting run (A: single panel). 



 
 



 
 

Supplementary Figure 5 

Distribution of PPARγ function scores by experimental condition and following integration with clinically relevant priors 

Raw PPARγ function scores were obtained for 9595 variants under four experimental conditions: A) 1uM Rosiglitazone, B) 0.1uM
Rosiglitazone, C) 10uM Prostaglandin J2, and D) 0.1uM Prostaglandin J2. The overall distribution of scores is overlaid to the right and
the function of known benign and lipodystrophy causing variants are highlighted in green and red respectively. E) Integrated functional 
scores (IFS) after classifier training using iterative linear discriminant analysis.  F) Posterior probability of non-pathogenicity of 9595 
PPARγ variants. This was calculated by combining IFS with prevalence of lipodystrophy in the general population (1:100,000) or from 
patients referred for lipodystrophy/familial diabetes (1:7). 
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