26 research outputs found

    Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia

    Get PDF
    [Background]: Chronic lymphocytic leukemia (CLL) is the most frequent, and still incurable, form of leukemia in the Western World. It is widely accepted that cancer results from an evolutionary process shaped by the acquisition of driver mutations which confer selective growth advantage to cells that harbor them. Clear examples are missense mutations in classic RAS genes (KRAS, HRAS and NRAS) that underlie the development of approximately 13% of human cancers. Although autonomous B cell antigen receptor (BCR) signaling is involved and mutations in many tumor suppressor genes and oncogenes have been identified, an oncogenic driver gene has not still been identified for CLL. [Methods]: Conditional knock-in mice were generated to overexpress wild type RRAS2 and prove its driver role. RT-qPCR analysis of a human CLL sample cohort was carried out to measure RRAS2 transcriptional expression. Sanger DNA sequencing was used to identify a SNP in the 3’UTR region of RRAS2 in human CLL samples. RNAseq of murine CLL was carried out to identify activated pathways, molecular mechanisms and to pinpoint somatic mutations accompanying RRAS2 overexpression. Flow cytometry was used for phenotypic characterization and shRNA techniques to knockdown RRAS2 expression in human CLL. [Results]: RRAS2 mRNA is found overexpressed in its wild type form in 82% of the human CLL samples analyzed (n = 178, mean and median = 5-fold) as well as in the explored metadata. A single nucleotide polymorphism (rs8570) in the 3’UTR of the RRAS2 mRNA has been identified in CLL patients, linking higher expression of RRAS2 with more aggressive disease. Deliberate overexpression of wild type RRAS2 in mice, but not an oncogenic Q72L mutation in the coding sequence, provokes the development of CLL. Overexpression of wild type RRAS2 in mice is accompanied by a strong convergent selection of somatic mutations in genes that have been identified in human CLL. R-RAS2 protein is physically bound to the BCR and mediates BCR signals in CLL. [Conclusions]: The results indicate that overexpression of wild type RRAS2 is behind the development of CLL.This work was supported by grants from the Spanish Association against Cancer (GC16173472GARC), PID2019-104935RB-I00 from the ‘Comision Interministerial de Ciencia y Tecnología’, the ‘Fundación Ramón Areces’, and by the European Research Council ERC 2013-Advanced Grant 334763 “NOVARIPP”, Instituto de Salud Carlos III (ISCIII) (CIBERONC – groups CB16/12/00233, CB16/12/00351), the Health Council of the Junta de Castilla y León (GRS 2036/A/19) and private Gilead (GLD15/00348). Juan de la Cierva (FJCI-2016-28756)

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Anales del III Congreso Internacional de Vivienda y Ciudad "Debate en torno a la nueva agenda urbana"

    Get PDF
    Acta de congresoEl III Congreso Internacional de Vivienda y Ciudad “Debates en torno a la NUEVa Agenda Urbana”, ha sido una apuesta de alto compromiso por acercar los debates centrales y urgentes que tensionan el pleno ejercicio del derecho a la ciudad. Para ello las instituciones organizadoras (INVIHAB –Instituto de Investigación de Vivienda y Hábitat y MGyDH-Maestría en Gestión y Desarrollo Habitacional-1), hemos convidado un espacio que se concretó con potencia en un debate transdisciplinario. Convocó a intelectuales de prestigio internacional, investigadores, académicos y gestores estatales, y en una metodología de innovación articuló las voces académicas con las de las organizaciones sociales y/o barriales en el Foro de las Organizaciones Sociales que tuvo su espacio propio para dar voz a quienes están trabajando en los desafíos para garantizar los derechos a la vivienda y los bienes urbanos en nuestras ciudades del Siglo XXI

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Epigenética, más allá de la Genética Epigenética, más allá de la Genética

    No full text
    Epigenetics is the study of reversible inheritable changes in gene function that occur without a change in the sequence of nuclear DNA and is transmitted from one generation of cells or organisms to the next. The chemical modifications to DNA and its associated proteins help to determine the selective use of genes and influence cell fate. Epigenetic modifications of the genome are involved in regulating many cellular processes. These include embryonic development, X chromosome inactivation and genomic imprinting. Abnormal epigenetic modifications and control can cause disease, including cancer and autoimmune diseases. Identification of inheritable epigenetic patterns such as DNA methylation and histone acetylation has been proposed as a useful marker for the early detection and prognosis of diseases caused by epigenetic errors.<br>La epigenética es el estudio de los cambios heredables reversibles en la función de los genes que ocurren sin cambios en la secuencia de ADN. Las modificaciones químicas del ADN y sus proteínas asociadas determinan la expresión selectiva de genes y su influencia en el comportamiento de las células. Las modificaciones epigenéticas del genoma regulan muchos procesos celulares, tales como el desarrollo embrionario, la inactivación del cromosoma X, la impronta genómica y, la estabilidad de los cromosomas. La alteración de las modificaciones epigenéticas o la pérdida de su control, pueden causar enfermedades como el cáncer y contribuir al desarrollo de enfermedades autoinmunes. Por lo anterior, se ha propuesto que la identificación de los patrones epigenéticos heredables tales como la metilación del ADN y la acetilación de histonas sería una herramienta útil en el diagnóstico y pronóstico de las enfermedades causadas por errores epigenéticos

    Additional file 8 of Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia [Dataset]

    No full text
    Fundación Científica Asociación Española Contra el Cáncer Ministerio de Ciencia, Innovación y Universidades H2020 European Research Council Instituto de Salud Carlos III Consejería de Educación, Junta de Castilla y LeónPeer reviewe

    Additional file 2 of Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia [Dataset]

    No full text
    Additional file 2: Figure S2. a, Flow cytometry analysis of GFP populations in 23 wk-old Rosa26-RRAS2fl/flxSox2-Cre mouse spleen. Representative two-color contour plots of GFPhigh and GFPlow populations in total B cells (CD19+), CD5+ leukemic and CD23+ follicular B cells. Bottom, representation of GFP populations in T lymphocytes (CD3+). b, Percentage of GFPhigh cells in the indicated populations determined by flow cytometry. Data show means ± SEM from n = 8 mice (23 wk-old mice). ****p < 0.0001 (one-way ANOVA test). c, Western blot analysis of R-RAS2 expression of sorted GFPlow and GFPhigh leukemic cells from the spleen of a 25 wk-old Rosa26-RRAS2fl/flxSox2-Cre mouse (β-actin as loading control). d, Dot plot representation of GFPlow CD5+ leukemic B cell evolution in mb1-Cre mice over time, showing each mouse individually (n = 14). Data points were adjusted to a linear fit. These data were retrieved from the same mice as in Fig. 2i. e, Percentage of CD5+ cells in the indicated populations comparing GFPhigh and GFPlow distribution. Data show means ± SEM from n = 4 30 wk-old mice. Two-way ANOVA test. f, Heatmap of RNAseq expression data showing the genes differentially regulated in wild-type, follicular B cells (n = 6, 12wk-old), leukemic CD19 + CD5+ B cells (n = 6, 54wk-old), CD19+ GFPhigh (n = 2, 54wk-old) and CD19+ GFPlow (n = 2, 54wk-old) populations. Only genes significantly different between GFPhigh GFPlow populations (p < 0.05) and with a difference of 2-fold or more were used. Gene expression is shown in normalized log2 fold change.Peer reviewe
    corecore