13 research outputs found

    Exclusive photoproduction of pi degrees up to large values of Mandelstam variables s, t, and u with CLAS

    Get PDF
    Exclusive photoproduction cross sections have been measured for the process γppπ0(e+e(γ))\gamma p \rightarrow p\pi^0(e^+e^-(\gamma)) with the Dalitz decay final state using tagged photon energies in the range of Eγ=1.2755.425E_{\gamma} = 1.275-5.425 GeV. The complete angular distribution of the final state π0\pi^0, for the entire photon energy range up to large values of tt and uu, has been measured for the first time. The data obtained show that the cross section dσ/dtd\sigma/dt, at mid to large angles, decreases with energy as s6.89±0.26s^{-6.89\pm 0.26} . This is in agreement with the perturbative QCD quark counting rule prediction of s7s^{-7} . Paradoxically, the size of angular distribution of measured cross sections is greatly underestimated by the QCD based Generalized Parton Distribution mechanism at highest available invariant energy s=11s=11 GeV2^2. At the same time, the Regge exchange based models for π0\pi^0 photoproduction are more consistent with experimental data.Comment: 7 pages, 6 figure

    The VLT-FLAMES Tarantula Survey

    No full text
    none11siopenMarkova, N.; Evans, C. J.; Bastian, N.; Beletsky, Y.; Bestenlehner, J.; Brott, I.; Cantiello, M.; Carraro, G.; Clark, J. S.; Crowther, P. A.; And, 23 coauthorsMarkova, N.; Evans, C. J.; Bastian, N.; Beletsky, Y.; Bestenlehner, J.; Brott, I.; Cantiello, M.; Carraro, Giovanni; Clark, J. S.; Crowther, P. A.; And, 23 coauthor

    Vaginal discharge among the primary school students and detection of the affection factors

    Get PDF
    Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third-generation observatories in more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the possible science reaches and the technological progress needed to realize a third-generation observatory are discussed in this paper. The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, will be reported

    Introduction

    No full text

    Introduction

    No full text
    corecore