261 research outputs found

    Hysteretic giant magnetoimpedance effect analyzed by first-order reversal curves

    Get PDF
    Hysteretic giant magnetoimpedance (GMI) of amorphous ribbons with a well-defined transversal domain structure is investigated by means of first-order reversal curves (FORC) analysis. The FORCs are not confined to the hysteretic area, exceeding the major curve amplitude. Irreversible switches of the transverse permeability, caused by domain wall structure transitions, may be the origin of the observed FORC distribution. An interlinked hysteron/anti-hysteron model is proposed to interpret it, which allows analyzing the influence of frequency and magnetostriction upon the hysteretic GMI effect.Comment: 19 pages, 9 figure

    Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. In this work, EIS measurements were carried out on a 300 W stack with 20 elementary cells. Electrochemical impedance spectra were recorded either on each cell or on the stack. Parameters of a Randles-like equivalent circuit were fitted to the experimental data. In order to improve the quality of the fit, the classical Randles cell was extended by changing the standard plane capacitor into a constant phase element (CPE). The effects of output current, cell position, operating temperature and humidification temperature on the impedance spectra were studied.This work was supported by Generalitat Valenciana (PROMETEO/2010/023).PĂ©rez Page, M.; PĂ©rez Herranz, V. (2014). Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy. International Journal of Hydrogen Energy. 39(8):4009-4015. https://doi.org/10.1016/j.ijhydene.2013.05.121S4009401539

    Exchange Anisotropy in Epitaxial and Polycrystalline NiO/NiFe Bilayers

    Full text link
    (001) oriented NiO/NiFe bilayers were grown on single crystal MgO (001) substrates by ion beam sputtering in order to determine the effect that the crystalline orientation of the NiO antiferromagnetic layer has on the magnetization curve of the NiFe ferromagnetic layer. Simple models predict no exchange anisotropy for the (001)-oriented surface, which in its bulk termination is magnetically compensated. Nonetheless exchange anisotropy is present in the epitaxial films, although it is approximately half as large as in polycrystalline films that were grown simultaneously. Experiments show that differences in exchange field and coercivity between polycrystalline and epitaxial NiFe/NiO bilayers couples arise due to variations in induced surface anisotropy and not from differences in the degree of compensation of the terminating NiO plane. Implications of these observations for models of induced exchange anisotropy in NiO/NiFe bilayer couples will be discussed.Comment: 23 pages in RevTex format, submitted to Phys Rev B

    Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is a very powerful tool to study the behaviour of electrochemical systems. At present, it is widely used in the fuel cell field in order to study challenging cutting edge issues as membrane drying or gas diffusion layer flooding amongst others. The proper analysis of impedance data requires the fulfilment of four fundamental conditions: causality, linearity, stability and finiteness. The non compliance with any of these conditions may lead to biased, or even misguided, conclusions. Therefore it is critical to verify the compliance of these conditions before accepting any analysis performed on an experimental spectrum. This is even more important in a fuel cell experimental spectrum analysis, since fuel cells are markedly non stationary systems. The aim of this work is to establish an impedance spectrum quantitative validation technique to validate the whole experimental spectrum and to identify the individual points within a spectrum that do not comply any of the four conditions, in order to remove these inconsistent points from the analysis. The designed validation method consists in a Kramers Kronig (KK) validation test, by equivalent electrical circuit fitting, coupled with a Montecarlo error propagation method. In a first step, the experimental spectrum is fitted to a particular electrical equivalent circuit, which satisfies the KK relations. Then, in a second step, a statistical Montecarlo method is used in order to propagate the model fitting parameter uncertainty through the model. Using this approach, a consistency region is built for a given confidence level: the experimental points inside this region are considered consistent for the given confidence level, whereas the outside points are rejected. The method was used on PEMFC experimental impedance spectra; and it successfully managed to identify inconsistent points, associated to no stationarities.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2015). Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy. 40(34):11279-11293. https://doi.org/10.1016/j.ijhydene.2015.03.135S1127911293403

    Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support

    Full text link
    International audienceIn this work, the effect of platinum content on the carbon support in commercial catalyst for electrodes to be used in a Polybenzimidazole (PBI)-based PEMFC has been studied. Three contents of platinum on a carbon support were studied (20 %, 40 % and 60 %). In all cases, the same quantity of PBI in the catalyst layer, which is required as a “binder” was used. From Hg porosimetry analyses, pore size distribution, porosity, mean pore size, and tortuosity of all electrodes were obtained. In all cases, a similar electrode mesostructure was observed. The electrochemical characterization was performed by voltamperometric studies, assessing the electrochemical surface area (ESA) of the electrodes, and by impedance spectroscopy (IS), determining the polarization resistance, and by the corresponding fuel cell measurements. The best results were obtained for the electrodes with a content of 40 % of platinum that led to power densities of 0.55 W/cm2 and 0.3 W/cm2 using O2 and air respectively, at 125 ÂșC. It has been demonstrated that the temperature has a favouring effect on fuel cell performance and flow humidification did not have remarkable effects as it was expected
    • 

    corecore