210 research outputs found

    Dynamic analysis of amyloid β-protein in behaving mice reveals opposing changes in ISF versus parenchymal Aβ during age-related plaque formation

    Get PDF
    Growing evidence supports the hypothesis that soluble, diffusible forms of the amyloid β-peptide (Aβ) are pathogenically important in Alzheimer’s disease (AD) and thus have both diagnostic and therapeutic salience. To learn more about the dynamics of soluble Aβ economy in vivo, we sampled by microdialysis the brain interstitial fluid (ISF), which contains the most soluble Aβ species in brain at steady state, in >40 wake, behaving APP transgenic mice before and during the process of Aβ plaque formation (age 3–28 months). Diffusible forms of Aβ, especially Aβ(42), declined significantly in ISF as mice underwent progressive parenchymal deposition of Aβ. Moreover, radiolabeled Aβ administered at physiological concentrations into ISF revealed a striking difference in the fate of soluble Aβ in plaque-rich (vs. -free) mice: it clears more rapidly from the ISF and becomes more associated with the TBS-extractable pool, suggesting that cerebral amyloid deposits can rapidly sequester soluble Aβ from the ISF. Likewise, acute γ-secretase inhibition in plaque-free mice showed a marked decline of Aβ(38), Aβ(40) and Aβ(42), whereas in plaque- rich mice, Aβ(42) declined significantly less. These results suggest that most of the Aβ(42) that populates the ISF in plaque-rich mice is derived not from new Aβ biosynthesis but rather from the large reservoir of less soluble Aβ(42) in brain parenchyma. Together, these and other findings herein illuminate the in vivo dynamics of soluble Aβ during the development of AD-type neuropathology and after γ-secretase inhibition and help explain the apparent paradox that cerebrospinal fluid Aβ(42) levels fall as humans develop AD

    Fluselenamyl: A novel benzoselenazole derivative for PET detection if amyloid plaques (Aβ) in Alzheimer\u27s disease

    Get PDF
    Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer’s disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [(18)F]-9, a PET tracer demonstrates superior (2–10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [(18)F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [(18)F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [(18)F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aβ binding, and a fair correlation with Aβ immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aβ pathophysiology in vivo

    Quantifying regional α -synuclein, amyloid β, and tau accumulation in Lewy body dementia

    Get PDF
    OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes

    Preclinical and clinical biomarker studies of CT1812:A novel approach to Alzheimer's disease modification

    Get PDF
    INTRODUCTION: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer’s disease (AD) patients’ brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812’s effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812’s impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS: Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APP(Swe)/PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPP(Swe/Lnd+) and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18–26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS: CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION: These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812

    Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

    Get PDF
    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages

    Reduced CSF turnover and decreased ventricular Aβ42 levels are related

    Get PDF
    International audienceBACKGROUND: The appearance of Aβ42 peptide deposits is admitted to be a key event in the pathogenesis of Alzheimer's disease, although amyloid deposits also occur in aged non-demented subjects. Aβ42 is a degradation product of the amyloid protein precursor (APP). It can be catabolized by several enzymes, reabsorbed by capillaries or cleared into cerebrospinal fluid (CSF). The possible involvement of a decrease in CSF turnover in A4β2 deposit formation is up to now poorly known. We therefore investigated a possible relationship between a reduced CSF turnover and the CSF levels of the A4β2 peptide.To this aim, CSF of 31 patients with decreased CSF turnover were studied. These patients presented chronic hydrocephalus communicating or obstructive, which required surgery (ventriculostomy or ventriculo-peritoneal shunt). Nine subjects had idiopathic normal pressure hydrocephalus (iNPH), and the other 22 chronic hydrocephalus from other origins (oCH).The Aβ42 peptide concentration was measured by an ELISA test in 31 ventricular CSF samples and in 5 lumbar CSF samples from patients with communicating hydrocephalus. RESULTS: The 5 patients with lumbar CSF analysis had similar levels of lumbar and ventricular Aβ42. A significant reduction in Aβ42 ventricular levels was observed in 24 / 31 patients with hydrocephalus. The values were lower than 300 pg/ml in 5 out of 9 subjects with iNPH, and in 15 out of 22 subjects with oCH. CONCLUSION: The decrease of CSF Aβ42 seems to occur independently of the surgical hydrocephalus aetiology. This suggests that a CSF reduced turnover may play an important role in the decrease of CSF Aβ42 concentration

    Amyloid Precursor Protein Is Trafficked and Secreted via Synaptic Vesicles

    Get PDF
    A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling

    Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

    Get PDF
    Background Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology. Results Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01). Conclusions Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology

    Electromagnetic Treatment to Old Alzheimer's Mice Reverses β-Amyloid Deposition, Modifies Cerebral Blood Flow, and Provides Selected Cognitive Benefit

    Get PDF
    Few studies have investigated physiologic and cognitive effects of “long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25–1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21–27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF “ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during “ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD

    Assessment of α-Synuclein Secretion in Mouse and Human Brain Parenchyma

    Get PDF
    Genetic, biochemical, and animal model studies strongly suggest a central role for α-synuclein in the pathogenesis of Parkinson's disease. α-synuclein lacks a signal peptide sequence and has thus been considered a cytosolic protein. Recent data has suggested that the protein may be released from cells via a non-classical secretory pathway and may therefore exert paracrine effects in the extracellular environment. However, proof that α-synuclein is actually secreted into the brain extracellular space in vivo has not been obtained. We developed a novel highly sensitive ELISA in conjugation with an in vivo microdialysis technique to measure α-synuclein in brain interstitial fluid. We show for the first time that α-synuclein is readily detected in the interstitial fluid of both α-synuclein transgenic mice and human patients with traumatic brain injury. Our data suggest that α-synuclein is physiologically secreted by neurons in vivo. This interstitial fluid pool of the protein may have a role in the propagation of synuclein pathology and progression of Parkinson's disease
    corecore