163 research outputs found
Design of Novel Reconfigurable Reflectarrays with Single-bit Phase Resolution for Ku-Band Satellite Antenna Applications
Reconfigurable reflectarray antennas operating in Ku-band are presented in this paper. First, a novel multilayer unit-cell based on polarization turning concept is proposed to achieve the single-bit phase shift required for reconfigurable reflectarray applications. The principle of the unit-cell is discussed using the current model and the space match condition, along with simulations to corroborate the design and performance criteria. Then, an offset-fed configuration is developed to verify performance of the unit-cell in antenna application, and its polarization transformation property is elaborated. Finally, an offset-fed reflectarray with 10×10 elements is developed and fabricated. The dual-polarized antenna utilizes the control code matrices to accomplish a wide angle beam-scanning. A full wave analysis is applied to the reflectarray, and detailed results are presented and discussed. This electronically steerable reflectarray antenna has significant potential for satellite applications, due to its wide operating band, simple control and beam-scanning capability
A novel strategy for rapid identification of the fruits of Illicium verum and Illicium anisatum using electronic nose and tongue technology
Purpose: To develop an effective and rapid strategy for the identification of fruits of I. verum and I. anisatum based on their odor and taste.Methods: Electronic nose (E-nose) and electronic tongue (E-tongue) technology was used to identify the fruits of I. verum (FIV) and I. anisatum (FIA). Samples of FIA, FIV, and FIA : FIV mixtures in different proportions (1 : 3, 1 : 1, and 3 : 1) were prepared to evaluate the identification abilities of E-nose and Etongue methods. Samples were powdered and sifted through a standard sieve (aperture size 355 ± 13 μm) for E-nose analysis. Each sample was refluxed with water for 1 h before E-tongue analysis. The acquired data were analyzed by principal component analysis (PCA) and discriminant factor analysis (DFA).Results: Based on the signals acquired by E-nose and E-tongue analyses, a total of 90 data points each were used for PCA. The three principal component values for E-nose analysis were PC1 = 93.89 %, PC2 = 6.08 %, and PC3 = 0.03 %, and those for E-tongue analysis were PC1 = 98.72 %, PC2 = 0.68 %, and PC3 = 0.57 %. The sample data were significantly divided into two groups representing FIV and FIA. Furthermore, E-nose and E-tongue assessments combined with PCA and DFA analyses effectively identified FIV, FIA and their mixtures.Conclusion: The use of E-nose and E-tongue technology is an effective and rapid strategy to identify the fruits of I. verum and I. anisatum and their mixtures. This strategy may also offer an effective method for detection of adulterants.Keywords: Illicium verum, Illicium anisatum, Discrimination, Electronic nose, Electronic tongue, Safety, Principal component analysis, Discriminant factor analysi
Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population
<div><p>Genome-wide association studies (GWAS) have identified dozens of common genetic variants associated with risk of colorectal cancer (CRC). However, the majority of CRC heritability remains unclear. In order to discover low-frequency, high-risk CRC susceptibility variants in Swedish population, we genotyped 1 515 CRC patients enriched for familial cases, and 12 108 controls. Case/control association analysis suggested eight novel variants associated with CRC risk (OR 2.0–17.6, p-value < 2.0E-07), comprised of seven coding variants in genes <i>RAB11FIP5</i>, <i>POTEA</i>, <i>COL27A1</i>, <i>MUC5B</i>, <i>PSMA8</i>, <i>MYH7B</i>, and <i>PABPC1L</i> as well as one variant downstream of <i>NEU1</i> gene. We also confirmed 27 out of 30 risk variants previously reported from GWAS in CRC with a mixed European population background. This study identified rare, coding sequence variants associated with CRC risk through analysis in a relatively homogeneous population. The segregation data suggest a complex mode of inheritance in seemingly dominant pedigrees.</p></div
FLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species
Synthesis and applications of porous non-silica metal oxide submicrospheres
© 2016 Royal Society of Chemistry. Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles. In particular, hydrothermal and low temperature solution precipitation methods, which both include various structure developing strategies such as hard templating, soft templating, hydrolysis, or those taking advantage of Ostwald ripening and the Kirkendall effect, are reviewed. In addition, a critical assessment of the effects of different experimental parameters such as reaction time, reaction temperature, calcination, pH and the type of reactants and solvents on the structure of the final products is presented. Finally, the practical usefulness of complex porous non-silica metal oxide submicrospheres in sensing, catalysis, biomedical, environmental and energy-related applications is presented
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Bioavailability and speciation of arsenic in urban street dusts from Baoding city, China
Twenty-one street dust samples were collected from the urban sites in Baoding, China, to investigate the species and bioavailabilty of arsenic in them. The ecological risk and bioavailability of arsenic were evaluated using three models including Bioavailability Factor (BF), Contamination Factors (Cf)and Geoaccumulation Index model (Igeo). The species of arsenic in the dust samples were analyzed using an optimized BCR sequential extraction method. The total concentrations of As in the street dust samples ranged from 13.16 mg kg−1 to 67.26 mg kg−1. Geoaccumulation index (Igeo) of As ranged from 0.28 to 1.99. The speciation analysis indicated that As in the street dust samples were mainly in the residual fraction (F4), and the proportion ranged from 84.35% to 87.07%. Moreover, the ranges of the BF and Cf were 0.650–0.129 and 0.119–0.186, respectively. The results indicated that arsenic contained in the street dust samples was with low bioavailability
1,3-Bis(4-tert-butylbenzyl)pyrimidine-2,4(1H,3H)-dione
In the crystal structure of the title molecule, C26H32N2O2, the six methyl groups are disordered over two positions, with site-occupancy ratios of 0.665&#8197;(8):0.335&#8197;(8) and 0.639&#8197;(8):0.361&#8197;(8). The central pyrimidine ring is almost planar with an r.m.s. deviation of 0.009&#8197;&#197;. The dihedral angles formed by the two benzene rings with the pyrimidine ring are 70.70&#8197;(8) and 88.02&#8197;(9)&#176;. The dihedral angle between two benzene rings is 46.67&#8197;(10)&#176;
- …