2,853 research outputs found

    On the influence of social bots in online protests. Preliminary findings of a Mexican case study

    Full text link
    Social bots can affect online communication among humans. We study this phenomenon by focusing on #YaMeCanse, the most active protest hashtag in the history of Twitter in Mexico. Accounts using the hashtag are classified using the BotOrNot bot detection tool. Our preliminary analysis suggests that bots played a critical role in disrupting online communication about the protest movement.Comment: 10 page

    An investigation of in-vivo neuroimaging in schizophrenia, using various modalities

    Get PDF
    Schizophrenia is a devastating mental illness and a huge disease burden in terms of cost. The individual is typically affected in early adulthood, thus loosing the best years of their life. The stigma of mental illness and pattern of downward social drift also results in families and society being adversely affected. With advances in neuroscience and neuroimaging, psychiatrists can advance their understanding of schizophrenia as a disease of the brain using biological models. This thesis investigates how volumetric magnetic resonance imaging (MRI), structural MRI techniques such as magnetisation transfer imaging (MTI), diffusion tensor imaging (DTI), and novel techniques such as optical coherence tomography (OCT) and visual function testing may be used to elucidate the neuropathology of schizophrenia in-vivo, in addition to explaining the cognitive deficits that are commonly observed. . The following studies are included in this thesis: 1) A diffusion tensor imaging (DTI) study to explore white matter abnormalities in first episode psychosis and correlations with cognitive performance. 2) An exploratory study utilizing OCT to investigate whether retinal nerve fibre layer thickness varies between patients with schizophrenia and healthy controls. 3) A longitudinal study using MRI and MTI to examine structural brain changes following first episode psychosis and correlating these findings with cognitive performance. 4) An investigation of chromatic vision in schizophrenia spectrum disorders and correlations between hue discrimination ability and cognitive performance. 5) A cross-sectional comparison study of grey matter volume and associations with oculomotor function in first episode patients and healthy controls

    An unidentified haplosporidian parasite of bay scallop Argopecten irradians cultured in the Shandong and Liaoning provinces of China

    Get PDF
    Since 1988 growers of bay scallop Argopecten irradians in China have been experiencing mortality in their cultured stocks. Although poorly documented, mortality apparently began near Qingdao and has since spread to other areas of Shandong and Liaoning provinces. Samples of cultured scallops were collected from several growing areas in these provinces and analyzed by histological methods for pathogens. An unidentified haplosporidian parasite was observed in a high proportion of scallops from two of the stocks examined. Most infections were of low intensity, but one heavy infection was also observed. Only plasmodia stages were observed; they occurred intercellularly in connective tissues throughout the scallops. Plasmodia were spherical to oval, varied from 4.0 to 17.0 mu m in diameter and contained from 2 to 18 nuclei. Absence of spores prevented generic assignment of the parasite. The source and pathogenicity of the haplosporidian could not be assessed without additional research. No other microbial parasites (i.e. rickettsia-like, chlamydia-like or kidney coccidia) were observed in any of the scallops examined

    A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography.

    Get PDF
    Retinal nerve fibre layer (RNFL) thickness and macular volume (MV) can be measured in vivo using optical coherence tomography (OCT) providing a "window into the brain". RNFL and MV are promising biomarkers in neurological diseases. This study explores the potential of RNFL and MV to detect axonal abnormalities in vivo in schizophrenia and their correlations with clinical features. OCT was performed in 49 patients (38 schizophrenia, 11 schizoaffective disorder) and 40 healthy controls matched for age and gender. Group comparisons were made between whole retina and quadrant RNFL thickness and MV using multi-level analyses. In patients, associations were sought between RNFL and MV with symptom severity (positive/negative). Patients and controls had similar whole retina RNFL thickness (p=0.86) and MV (p=0.64), but RNFL in the right nasal quadrant of the schizoaffective group was thinner than in the schizophrenia group (p=0.02). In patients, positive symptom severity was associated with smaller MV (right β=-0.54, p=0.02; left β=-0.49, p=0.04). Normal MV and RNFL thickness suggests unmyelinated axons in patients with schizophrenia/schizoaffective disorder remain unaffected. Longitudinal studies using higher resolution OCT will clarify whether progressive RNFL and MV changes occur and whether they can be used as state or trait markers in schizophrenia

    Longitudinal study of middle east respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015

    Get PDF
    Two herds of dromedary camels were longitudinally sampled with nasal and rectal swabs and serum, between September 2014 and May 2015, and the samples were tested for Middle East Respiratory Syndrome (MERS) coronavirus RNA and antibodies. Evidence of MERS-CoV infection was confirmed in one herd on the basis of detection of virus RNA in nasal swabs from three camels and significant increases in the antibody titers from three others. The three viruses were genetically identical, thus indicating introduction of a single virus into this herd. There was evidence of reinfection of camels that were previously seropositive, thus suggesting that prior infection does not provide complete immunity from reinfection, a finding that is relevant to camel vaccination strategies as a means to prevent zoonotic transmission.published_or_final_versio

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    Study protocol of the LARK (TROG 17.03) clinical trial: a phase II trial investigating the dosimetric impact of Liver Ablative Radiotherapy using Kilovoltage intrafraction monitoring

    Get PDF
    BACKGROUND: Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive treatment which allows delivery of an ablative radiation dose with high accuracy and precision. SABR is an established treatment for both primary and secondary liver malignancies, and technological advances have improved its efficacy and safety. Respiratory motion management to reduce tumour motion and image guidance to achieve targeting accuracy are crucial elements of liver SABR. This phase II multi-institutional TROG 17.03 study, Liver Ablative Radiotherapy using Kilovoltage intrafraction monitoring (LARK), aims to investigate and assess the dosimetric impact of the KIM real-time image guidance technology. KIM utilises standard linear accelerator equipment and therefore has the potential to be a widely available real-time image guidance technology for liver SABR. METHODS: Forty-six patients with either hepatocellular carcinoma or oligometastatic disease to the liver suitable for and treated with SABR using Kilovoltage Intrafraction Monitoring (KIM) guidance will be included in the study. The dosimetric impact will be assessed by quantifying accumulated patient dose distribution with or without the KIM intervention. The patient treatment outcomes of local control, toxicity and quality of life will be measured. DISCUSSION: Liver SABR is a highly effective treatment, but precise dose delivery is challenging due to organ motion. Currently, there is a lack of widely available options for performing real-time tumour localisation to assist with accurate delivery of liver SABR. This study will provide an assessment of the impact of KIM as a potential solution for real-time image guidance in liver SABR. TRIAL REGISTRATION: This trial was registered on December 7th 2016 on ClinicalTrials.gov under the trial-ID NCT02984566

    Evaluation of rK39 rapid diagnostic tests for canine visceral leishmaniasis : longitudinal study and meta-analysis

    Get PDF
    Canine visceral leishmaniasis is a vector-borne disease caused by the intracellular parasite Leishmania infantum. It is an important veterinary disease, and dogs are also the main animal reservoir for human infection. The disease is widespread in the Mediterranean area, and parts of Asia and South and Central America, and is potentially fatal in both dogs and humans unless treated. Diagnosis of canine infections requires serological or molecular tests. Detection of infection in dogs is important prior to treatment, and in epidemiological studies and control programmes, and a sensitive and specific rapid diagnostic test would be very useful. Rapid diagnostic tests (RDTs) have been developed, but their diagnostic performance has been reported to be variable. We evaluated the sensitivity of a RDT based on serological detection of the rK39 antigen in a cohort of naturally infected Brazilian dogs. The sensitivity of the test to detect infection was relatively low, but increased with time since infection and the severity of infection. We then carried out a meta-analysis of published studies of rK39 RDTs, evaluating the sensitivity to detect disease and infection. The results suggest that rK39 RDTs may be useful in a veterinary clinical setting, but the sensitivity to detect infection is too low for operational control programmes

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe
    • …
    corecore