42 research outputs found

    Relative judgement is relatively difficult: evidence against the role of relative judgement in absolute identification

    Get PDF
    A variety of processes have been put forward to explain absolute identification performance. One difference between current models of absolute identification is the extent to which the task involves accessing stored representations in long-term memory (e.g. exemplars in memory, Kent & Lamberts, Journal of Experimental Psychology: Learning Memory and Cognition, 31, 289–305, 2005) or relative judgement (comparison of the current stimulus to the stimulus on the previous trial, Stewart, Brown & Chater, Psychological Review, 112, 881–911, 2005). In two experiments we explored this by tapping into these processes. In Experiment 1 participants completed an absolute identification task using eight line lengths whereby a single stimulus was presented on each trial for identification. They also completed a matching task aimed at mirroring exemplar comparison in which eight line lengths were presented in a circular array and the task was to report which of these matched a target presented centrally. Experiment 2 was a relative judgement task and was similar to Experiment 1 except that the task was to report the difference (jump-size) between the current stimulus and that on the previous trial. The absolute identification and matching data showed clear similarities (faster and more accurate responding for stimuli near the edges of the range and similar stimulus-response confusions). In contrast, relative judgment performance was poor suggesting relative judgement is not straightforward. Moreover, performance as a function of jump-size differed considerably between the relative judgement and absolute identification tasks. Similarly, in the relative judgement task, predicting correct stimulus identification based on successful relative judgement yielded the reverse pattern of performance observed in the absolute identification task. Overall, the data suggest that relative judgement does not underlie absolute identification and that the task is more likely reliant on an exemplar comparison process

    Investigating decision rules with a new experimental design: the EXACT paradigm.

    Get PDF
    In the decision-making field, it is important to distinguish between the perceptual process (how information is collected) and the decision rule (the strategy governing decision-making). We propose a new paradigm, called EXogenous ACcumulation Task (EXACT) to disentangle these two components. The paradigm consists of showing a horizontal gauge that represents the probability of receiving a reward at time t and increases with time. The participant is asked to press a button when they want to request a reward. Thus, the perceptual mechanism is hard-coded and does not need to be inferred from the data. Based on this paradigm, we compared four decision rules (Bayes Risk, Reward Rate, Reward/Accuracy, and Modified Reward Rate) and found that participants appeared to behave according to the Modified Reward Rate. We propose a new way of analysing the data by using the accuracy of responses, which can only be inferred in classic RT tasks. Our analysis suggests that several experimental findings such as RT distribution and its relationship with experimental conditions, usually deemed to be the result of a rise-to-threshold process, may be simply explained by the effect of the decision rule employed

    Assaying Environmental Nickel Toxicity Using Model Nematodes

    Get PDF
    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Assessing the Speed-Accuracy Trade-Off Effect on the Capacity of Information Processing

    No full text
    The ability to trade accuracy for speed is fundamental to human decision making. The speed–accuracy trade-off (SAT) effect has received decades of study, and is well understood in relatively simple decisions: collecting more evidence before making a decision allows one to be more accurate but also slower. The SAT in more complex paradigms has been given less attention, largely due to limits in the models and statistics that can be applied to such tasks. Here, we have conducted the first analysis of the SAT in multiple signal processing, using recently developed technologies for measuring capacity that take into account both response time and choice probability. We show that the primary influence of caution in our redundant-target experiments is on the threshold amount of evidence required to trigger a response. However, in a departure from the usual SAT effect, we found that participants strategically ignored redundant information when they were forced to respond quickly, but only when the additional stimulus was reliably redundant. Interestingly, because the capacity of the system was severely limited on redundant-target trials, ignoring additional targets meant that processing was more efficient when making fast decisions than when making slow and accurate decisions, where participants’ limited resources had to be divided between the 2 stimuli
    corecore