37 research outputs found

    The Dynactin Complex Enhances the Speed of Microtubule-Dependent Motions of Adenovirus Both Towards and Away from the Nucleus

    Get PDF
    Unlike transport vesicles or organelles, human adenovirus (HAdV) directly binds to the microtubule minus end-directed motor dynein for transport to the nucleus. The dynein cofactor dynactin enhances nuclear transport of HAdV and boosts infection. To determine if dynactin has a specific role in cytoplasmic trafficking of incoming HAdV on microtubules, we used live cell spinning disc confocal microscopy at 25 Hz acquisition frequency and automated tracking of single virus particles at 20–50 nm spatial resolution. Computational dissection by machine-learning algorithms extracted specific motion patterns of viral trajectories. We found that unperturbed cells supported two kinds of microtubule-dependent motions, directed motions (DM) and fast drifts (FD). DM had speeds of 0.2 to 2 ÎŒm/s and run lengths of 0.4 up to 7 ÎŒm, while FD were slower and less extensive at 0.02 to 0.4 ÎŒm/s and 0.05 to 2.5 ÎŒm. Dynactin interference by overexpression of p50/dynamitin or a coiled-coil domain of p150/Glued reduced the speeds and amounts of both center- and periphery-directed DM but not FD, and inhibited infection. These results indicate that dynactin enhances adenovirus infection by increasing the speed and efficiency of dynein-mediated virus motion to the nucleus, and, surprisingly, also supports a hereto unknown motor activity for virus transport to the cell periphery

    The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport

    Full text link
    Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein/dynactin motor to traffic to the nuclear membrane, and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1/XPO1 (chromosome-region-maintenance-1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than about 2 ”m from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection

    A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus

    Get PDF
    Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Cytoplasmic Trafficking of Minute Virus of Mice: Low-pH Requirement, Routing to Late Endosomes, and Proteasome Interaction

    No full text
    The cytoplasmic trafficking of the prototype strain of minute virus of mice (MVMp) was investigated by analyzing and quantifying the effect of drugs that reduce or abolish specific cellular functions on the accumulation of viral macromolecules. With this strategy, it was found that a low endosomal pH is required for the infection, since bafilomycin A(1) and chloroquine, two pH-interfering drugs, were similarly active against MVMp. Disruption of the endosomal network by brefeldin A interfered with MVMp infection, indicating that viral particles are routed farther than the early endocytic compartment. Pulse experiments with endosome-interfering drugs showed that the bulk of MVMp particles remained in the endosomal compartment for several hours before its release to the cytosol. Drugs that block the activity of the proteasome by different mechanisms, such as MG132, lactacystin, and epoxomicin, all strongly blocked MVMp infection. Pulse experiments with the proteasome inhibitor MG132 indicated that MVMp interacts with cellular proteasomes after endosomal escape. The chymotrypsin-like but not the trypsin-like activity of the proteasome is required for the infection, since the chymotrypsin inhibitors N-tosyl-l-phenylalanine chloromethyl ketone and aclarubicin were both effective in blocking MVMp infection. However, the trypsin inhibitor Nα-p-tosyl-l-lysine chloromethyl ketone had no effect. These results suggest that the ubiquitin-proteasome pathway plays an essential role in the MVMp life cycle, probably assisting at the stages of capsid disassembly and/or nuclear translocation

    Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton

    Get PDF
    Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles. This review explores how the analysis of viral trajectories informs about mechanisms of infection. We discuss the methodology enabling researchers to visualize single virions in cells by fluorescence imaging and tracking. Virus visualization and tracking are increasingly enhanced by computational analyses of virus trajectories as well as in silico modeling. Combined approaches reveal previously unrecognized features of virus-infected cells. Using select examples of complementary methodology, we highlight the role of actin filaments and microtubules, and their associated motors in virus infections. In-depth studies of single virion dynamics at high temporal and spatial resolutions thereby provide deep insight into virus infection processes, and are a basis for uncovering underlying mechanisms of how cells function

    The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport

    Full text link
    Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein/dynactin motor to traffic to the nuclear membrane, and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1/XPO1 (chromosome-region-maintenance-1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than about 2 ”m from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection

    Viral surfing on a growing filopodium.

    No full text
    <p>(A) Red fluorescent human adenovirus type 2 particles (red puncta in middle and lower rows) and actin were imaged by spinning disc confocal microscopy <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1000621#ppat.1000621-Gastaldelli1" target="_blank">[86]</a> on human embryonic retinoblast 911 cells stably expressing GFP-actin (green structures in upper and lower rows). Note that the upper particle attached to a filopodium at time point 10 s, and engaged in a drifting motion towards the cell body (lower side of the images, not shown). During this movement, the filopodial actin structures expanded away from the cell body. A second virus particle bound to the same filopodium remained stationary up to 100 s, indicating that it was not coupled to the actin flow. Bar  = 2 ”m. (B) Trajectory profile of the drifting particle from (A) acquired by automated tracking of 2 Hz images. Note that this particle covered approximately 7 ”m in 90 s from the start point (10 s) to the end point (100 s) with an average speed of 0.08 ”m/s Bar  = 2 ”m.</p

    Principles of virus coupling to retrograde actin flow.

    No full text
    <p>Retrograde flow of filamentous actin (F-actin) is maintained by two machineries. One is actin filament polymerization at the plus end of the filament, for example, near the tip of a filopodium, and depolymerization at the opposite minus end. Depolymerization of F-actin by cytochalasin D (CytD), inhibition of actin polymerization by latrunculin B (LatB), or stabilization by jasplakinolide (Jas) inhibit retrograde flow of F-actin, virus drifts on filopodia, and also infection. The second machinery is based on the myosin II (Myo II) motor, which pulls actin filaments to the cell body. Myo II is anchored in the actin mesh at the cell body and cortex. Inhibition of Myo II by blebbistatin inhibits actin retrograde flow, virus drifts, and infection. The linkage of viruses to retrograde flow can occur through viral transmembrane receptors directly or indirect to F-actin (1), or require signalling downstream of virus binding and receptor clustering (2). Another mechanism is by the partitioning of receptors into specialized membrane domains, such as lipid rafts that transiently link to actin retrograde flow (3).</p
    corecore