8 research outputs found

    Comparative next-generation sequencing of adeno-associated virus inverted terminal repeats

    No full text
    The inverted terminal repeats (ITRs) of adeno-associated virus (AAV) are notoriously difficult to sequence owing to their high GC-content (70%) and palindromic sequences that result in the formation of a very stable, 125 bp long, T-shaped hairpin structure. Here we evaluate the performance of two widely used next-generation sequencing platforms, 454 GS FLX (Roche) and MiSeq Benchtop Sequencer (Illumina), in analyzing ITRs in comparatively sequencing linear amplification-meditated PCR (LAM-PCR) amplicons derived from AAV-concatemeric structures. While our data indicate that both platforms can sequence complete ITRs, efficiencies (MiSeq: 0.11% of sequence reads; 454: 0.02% of reads), frequencies (MiSeq: 171 full ITRs, 454: 3 full ITRs), and rates of deviation from the derived ITR consensus sequence (MiSeq: 0.8%–1.3%; 454: 0.5%) did differ. These results suggest that next-generation sequencing platforms can be used to specifically detect ITR mutations and sequence complete ITRs. </jats:p

    Presence of a trs-Like Motif Promotes Rep-Mediated Wild-Type Adeno-Associated Virus Type 2 Integration

    No full text
    High-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration

    In Utero Transfer of Adeno-Associated Viral Vectors Produces Long-Term Factor IX Levels in a Cynomolgus Macaque Model

    Get PDF
    The safe correction of an inherited bleeding disorder in utero prior to the onset of organ damage is highly desirable. Here, we report long-term transgene expression over more than 6 years without toxicity following a single intrauterine gene transfer (IUGT) at 0.9G using recombinant adeno-associated vector (AAV)-human factor IX (hFIX) in the non-human primate model we have previously described. Four of six treated animals monitored for around 74 months expressed hFIX at therapeutic levels (3.9%-120.0%). Long-term expression was 6-fold higher in males and with AAV8 compared to AAV5, mediated almost completely at this stage by random genome-wide hepatic proviral integrations, with no evidence of hotspots. Post-natal AAV challenge without immunosuppression was evaluated in two animals exhibiting chronic low transgene expression. The brief neutralizing immune reaction elicited had no adverse effect and, although expression was not improved at the dose administered, no clinical toxicity was observed. This long-term surveillance thus confirms the safety of late-gestation AAV-hFIX transfer and demonstrates that postnatal re-administration can be performed without immunosuppression, although it requires dose optimization for the desired expression. Nevertheless, eventual vector genotoxicity and the possibility of germline transmission will require lifelong monitoring and further evaluation of the reproductive function of treated animals

    Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques

    No full text
    Intrauterine gene transfer (IUGT) offers ontological advantages including immune naiveté mediating tolerance to the vector and transgenic products, and effecting a cure before development of irreversible pathology. Despite proof-of-principle in rodent models, expression efficacy with a therapeutic transgene has yet to be demonstrated in a preclinical nonhuman primate (NHP) model. We aimed to determine the efficacy of human Factor IX (hFIX) expression after adeno-associated-viral (AAV)-mediated IUGT in NHP. We injected 1.0-1.95 × 10 vector genomes (vg)/kg of self-complementary (sc) AAV5 and 8 with a LP1-driven hFIX transgene intravenously in 0.9G late gestation NHP fetuses, leading to widespread transduction with liver tropism. Liver-specific hFIX expression was stably maintained between 8 and 112% of normal activity in injected offspring followed up for 2-22 months. AAV8 induced higher hFIX expression (P = 0.005) and milder immune response than AAV5. Random hepatocellular integration was found with no hotspots. Transplacental spread led to low-level maternal tissue transduction, without evidence of immunotoxicity or germline transduction in maternal oocytes. A single intravenous injection of scAAV-LP1-hFIXco to NHP fetuses in late-gestation produced sustained clinically-relevant levels of hFIX with liver-specific expression and a non-neutralizing immune response. These data are encouraging for conditions where gene transfer has the potential to avert perinatal death and long-term irreversible sequelae
    corecore