1,099 research outputs found

    Evidence for an exotic S=-2, Q=-2 baryon resonance in proton-proton collisions at the CERN SPS

    Get PDF
    Results of resonance searches in the Xi - pi -, Xi - pi +, Xi -bar+ pi -, and Xi -bar+ pi + invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi - pi - baryon resonance with mass of 1.862±0.002 GeV/c2 and width below the detector resolution of about 0.018 GeV/c2. The significance is estimated to be above 4.2 sigma . This state is a candidate for the hypothetical exotic Xi --3/2 baryon with S=-2, I=3 / 2, and a quark content of (dsdsu-bar). At the same mass, a peak is observed in the Xi - pi + spectrum which is a candidate for the Xi 03/2 member of this isospin quartet with a quark content of (dsusd-bar). The corresponding antibaryon spectra also show enhancements at the same invariant mass

    A new lateral flow assay to detect sIL-2R during T-cell mediated rejection after kidney transplantation

    Get PDF
    Kidney is the most frequently transplanted among all solid organs worldwide. Kidney transplant recipients (KTRs) undergo regular follow-up examinations for the early detection of acute rejections. The gold standard for proving a T-cell mediated rejection (TCMR) is a biopsy of the renal graft often occurring as indication biopsy, in parallel to an increased serum creatinine that may indicate deterioration of renal transplant function. The goal of the current work was to establish a lateral flow assay (LFA) for diagnosing acute TCMR to avoid harmful, invasive biopsies. Soluble interleukin-2 (IL-2) receptor (sIl-2R) is a potential biomarker representing the α-subunit of the IL-2 receptor produced by activated T-cells, e.g., after allogen contact. To explore the diagnostic potential of sIL-2R as a biomarker for TCMR and borderline TCMR, plasma and urine samples were collected from three independent KTR cohorts with various distinct histopathological diagnostic findings according to BANFF (containing 112 rsp. 71 rsp. 61 KTRs). Samples were analyzed by a Luminex-based multiplex technique and cut off-ranges were determined. An LFA was established with two specific sIL-2R-antibodies immobilized on a nitrocellulose membrane. A significant association between TCMR, borderline TCMR and sIL-2R in plasma and between TCMR and sIL-2R in urine of KTRs was confirmed using the Mann-Whitney U test. The LFA was tested with sIL-2R-spiked buffer samples establishing a detection limit of 25 pM. The performance of the new LFA was confirmed by analyzing urine samples of the 2nd and 3rd patient cohort with 35 KTRs with biopsy proven TCMRs, 3 KTRs diagnosed with borderline TCMR, 1 mixed AMR/TCMR rsp. AMR/borderline TCMR and 13 control patients with a rejection-free kidney graft proven by protocol biopsies. The new point-of-care assay showed a specificity of 84.6% and sensitivity of 87.5%, and a superior estimated glomerular filtration rate (eGFR) at the time point of biopsy (specificity 30.8%, sensitivity 85%)

    An Antibody-Aptamer-Hybrid Lateral Flow Assay for Detection of CXCL9 in Antibody-Mediated Rejection after Kidney Transplantation

    Get PDF
    Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies

    Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean

    Get PDF
    The Posidonia oceanica seagrass is the foundation species of the coastal Mediterranean, whose meadows support significant ecosystem services: food security, coastal protection, biodiversity maintenance, carbon sequestration, amongst others. This endemic in the basin seagrass features the largest carbon storage among seagrasses globally, contributing substantially to global blue carbon stocks.  However, climate change, coastal development, and decreasing water quality all render this slow-growing species at risk of area loss, functional extinction, and, hence, its provided services. This risk is further complicated by the current knowledge gaps in its bioregional extent, necessitating accurate, efficient and spatially explicit mapping and accounting of its distribution and trajectories at a high spatial resolution. Here, we leveraged recent Earth Observation advances—cloud computing, open satellite data, and machine learning—with field data via a cloud-based ecosystem accounting framework to map the spatially-explicit ecosystem extent of P. oceanica seagrass across the whole Mediterranean, at 10m resolution.  Employing 279,186 Sentinel-2 satellite images between 2015-2019, and a human-labelled training dataset of 62,928 pixels, we mapped 19,020 km2 of P. oceanica seagrass area in 22 countries across 56,783 km2 of mapped seabed between 0-25 m of depth. Based on 2,480 independent field-based points, we observe an overall accuracy of 72%. Using a Tier 2 assessment, we estimated the bioregional blue carbon storage of P. oceanica beds to be 722.2 million MgC.  As reference data collections, remote sensing technology and biophysical modelling improve and coalesce, such extent accounts could support physical and monetary accounting of seagrass condition and ecosystem services. We envisage that such holistic seagrass ecosystem accounts could enable effective policy uptake in national climate, biodiversity and protection strategies and necessary financing. This in turn could accelerate transparent natural climate solutions and coastal resilience, beyond the physical location of seagrass beds and the 21th century

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    System size and centrality dependence of the balance function in A + A collisions at sqrt s NN = 17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Dermatite e paniculite piogranulomatosas causadas por Nocardia nova em um gato

    Get PDF
    Este relato descreve os achados clínicos, patológicos e microbiológicos de uma infecção incomum por Nocardia nova em um gato. Um gato macho, sem raça definida, de 3 anos de idade, apresentou ferida cutânea exsudativa e ulcerada. Amostras da lesão foram coletadas para histopatologia e bacteriologia. Histologicamente, a lesão consistiu de dermatite e paniculite piogranulomatosas associadas a colônias grandes e irregulares de bactérias filamentosas e ramificadas. O cultivo bacteriológico revelou bacilos filamentosos, gram-positivos, parcialmente ácido resistentes, visualizados pelas colorações de Gram e Kinyoun, respectivamente. A identificação da Nocardia novafoi confirmada pelo sequenciamento 16S rDNA e análise filogenética. Este é o primeiro caso de paniculite e dermatite piogranulomatosas em um gato causado por Nocardia nova registrado no Brasil.This report describes the clinical, pathological and microbiological findings of an uncommon infection in a cat by Nocardia nova. A 3-year-old male domestic short hair cat with an ulcerated and exudative cutaneous wound was presented for clinical examination. Samples were collected for histopathology and bacteriology diagnosis. Microscopically, the lesion was diagnosed as pyogranulomatous dermatitis and panniculitis with large and irregular colonies of branching filamentous bacterium. Skin bacteriological culture showed gram-positive rods and partially acid-fast branching filaments by gram and kinyoun staining, respectively. The identity of Nocardia nova was confirmed by 16S rDNA sequencing and phylogenetic analysis. This is the first case of pyogranulomatous dermatitis and panniculitis in a cat caused byNocardia nova reported in Brazil

    Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions

    Get PDF
    Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors
    • …
    corecore