361 research outputs found

    Impaired perception of facial motion in autism spectrum disorder

    Get PDF
    Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported

    Revision total hip arthroplasty using the Zweymuller femoral stem

    Get PDF
    Background: A variety of femoral stem designs have been reported to be successful in revision total hip arthroplasty without consensus as to optimal design. We evaluated the clinical and radiographic outcomes in a consecutive series of femoral revisions using a wedge-shape, tapered-stem design at medium and long-term follow-up. Materials and methods: We performed a retrospective review of clinical and radiographic outcomes of twenty-eight consecutive femoral revisions arthroplasties, which were done using the Zweymuller femoral stem. Results: The mean follow-up was 7.4 years (range 2-15 years). No stem re-revision was necessary. All stems were judged to be stable by radiographic criteria at the most recent follow-up. The final mean Harris hip score was 90. There was no difference in Harris hip scores, implant stability, or radiological appearance (distal cortical hypertrophy or proximal stress shielding) of the implants between medium-term (mean 5.7 years) and long-term (mean 12.4 years) follow-up. Conclusions: We found the Zweymuller femoral stem design to be durable for revision hip arthroplasty when there is an intact metaphyseal-diaphyseal junction for adequate press-fit stability at surgery. © Springer-Verlag 2008

    Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly associated with human asthma.</p> <p>Methods</p> <p>We compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure.</p> <p>Results</p> <p>PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction of Gob-5 and Muc5-ac.</p> <p>Conclusion</p> <p>Given the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists deserve investigation as potential therapies for human asthma.</p

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Occurrence of genes of putative fibrinogen binding proteins and hemolysins, as well as of their phenotypic correlates in isolates of S. lugdunensis of different origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus lugdunensis </it>is an important human pathogen that causes potentially fatal endocarditis, osteomyelitis and skin and soft tissue infections similar to diseases caused by <it>Staphylococcus aureus</it>. Nevertheless, in contrast to <it>S. aureus</it>, data on pathogenicity factors of <it>S. lugdunensis </it>is scarce. Two adhesins, a fibrinogen and a von Willebrand factor binding protein, and a <it>S. lugdunensis </it>synergistic hemolysin (SLUSH) have been previously described. Moreover, the newly sequenced genome of <it>S. lugdunensis </it>revealed genes of other putative fibrinogen binding adhesins and hemolysins. The aim of this study was to gain more insight into the occurrence of genes likely coding for fibrinogen binding adhesins and hemolysins using clinical strains of <it>S. lugdunensis</it>.</p> <p>Findings</p> <p>Most of the putative adhesin genes and hemolysin genes investigated in this study were highly prevalent, except for the SLUSH gene cluster. In contrast to previous reports, binding to fibrinogen was detected in 29.3% of the <it>S. lugdunensis </it>strains. In most strains, hemolysis on blood agar plates was weak after 24 h and distinct after 48 h of incubation. The fibrinogen binding and hemolysis phenotypes were also independent of the type of clinical specimen, from which the isolates were obtained.</p> <p>Conclusion</p> <p>In this study we described a pyrrolidonyl arylamidase negative <it>S. lugdunensis </it>isolate. Our data indicate that a matrix-assisted laser desorption ionisation time-of-flight MS-based identification of <it>S. lugdunensis </it>or species-specific PCR's should be performed in favour of pyrrolidonyl arylamidase testing. In contrast to the high occurrence of putative fibrinogen binding protein genes, 29.3% of the <it>S. lugdunensis </it>strains bound to fibrinogen. Putative hemolysin genes were also prevalent in most of the <it>S. lugdunensis </it>strains, irrespective of their hemolysis activity on Columbia blood agar plates. Similar to a previous report, hemolysis after 48 h of incubation is also indicative for <it>S. lugdunensis</it>. The SLUSH gene cluster was detected in an estimated 50% of the strains, indicating that this locus is different or non-prevalent in many strains.</p

    Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are involved in diverse physiological functions and can be released as neurotransmitters or neuromodulators acting within the central nervous system, and as circulating neurohormones in insect hemolymph. The insect short neuropeptide F (sNPF) peptides, related to the vertebrate neuropeptide Y (NPY) peptides, have been implicated in the regulation of food intake and body size, and play a gonadotropic role in the ovaries of some insect species. Recently the sNPF peptides were localized in the brain of larval and adult <it>Drosophila</it>. However, the location of the sNPF receptor, a G protein-coupled receptor (GPCR), has not yet been investigated in brains of any adult insect. To elucidate the sites of action of the sNPF peptide(s), the sNPF receptor tissue expression and cellular localization were analyzed in queens of the red imported fire ant, <it>Solenopsis invicta </it>Buren (Hymenoptera), an invasive social insect.</p> <p>Results</p> <p>In the queen brains and subesophageal ganglion about 164 cells distributed in distinctive cell clusters (C1-C9 and C12) or as individual cells (C10, C11) were immuno-positive for the sNPF receptor. Most of these neurons are located in or near important sensory neuropils including the mushroom bodies, the antennal lobes, the central complex, and in different parts of the protocerebrum, as well as in the subesophageal ganglion. The localization of the sNPF receptor broadly links the receptor signaling pathway with circuits regulating learning and feeding behaviors. In ovaries from mated queens, the detection of sNPF receptor signal at the posterior end of oocytes in mid-oogenesis stage suggests that the sNPF signaling pathway may regulate processes at the oocyte pole.</p> <p>Conclusions</p> <p>The analysis of sNPF receptor immunolocalization shows that the sNPF signaling cascade may be involved in diverse functions, and the sNPF peptide(s) may act in the brain as neurotransmitter(s) or neuromodulator(s), and in the ovaries as neurohormone(s). To our knowledge, this is the first report of the cellular localization of a sNPF receptor on the brain and ovaries of adult insects.</p

    Food Catches the Eye but Not for Everyone: A BMI–Contingent Attentional Bias in Rapid Detection of Nutriments

    Get PDF
    An organism's survival depends crucially on its ability to detect and acquire nutriment. Attention circuits interact with cognitive and motivational systems to facilitate detection of salient sensory events in the environment. Here we show that the human attentional system is tuned to detect food targets among nonfood items. In two visual search experiments participants searched for discrepant food targets embedded in an array of nonfood distracters or vice versa. Detection times were faster when targets were food rather than nonfood items, and the detection advantage for food items showed a significant negative correlation with Body Mass Index (BMI). Also, eye tracking during searching within arrays of visually homogenous food and nonfood targets demonstrated that the BMI-contingent attentional bias was due to rapid capturing of the eyes by food items in individuals with low BMI. However, BMI was not associated with decision times after the discrepant food item was fixated. The results suggest that visual attention is biased towards foods, and that individual differences in energy consumption - as indexed by BMI - are associated with differential attentional effects related to foods. We speculate that such differences may constitute an important risk factor for gaining weight

    The Coxiella burnetii Dot/Icm System Delivers a Unique Repertoire of Type IV Effectors into Host Cells and Is Required for Intracellular Replication

    Get PDF
    Coxiella burnetii, the causative agent of human Q fever, is an intracellular pathogen that replicates in an acidified vacuole derived from the host lysosomal network. This pathogen encodes a Dot/Icm type IV secretion system that delivers bacterial proteins called effectors to the host cytosol. To identify new effector proteins, the functionally analogous Legionella pneumophila Dot/Icm system was used in a genetic screen to identify fragments of C. burnetii genomic DNA that when fused to an adenylate cyclase reporter were capable of directing Dot/Icm-dependent translocation of the fusion protein into mammalian host cells. This screen identified Dot/Icm effectors that were proteins unique to C. burnetii, having no overall sequence homology with L. pneumophila Dot/Icm effectors. A comparison of C. burnetii genome sequences from different isolates revealed diversity in the size and distribution of the genes encoding many of these effectors. Studies examining the localization and function of effectors in eukaryotic cells provided evidence that several of these proteins have an affinity for specific host organelles and can disrupt cellular functions. The identification of a transposon insertion mutation that disrupts the dot/icm locus was used to validate that this apparatus was essential for translocation of effectors. Importantly, this C. burnetii Dot/Icm-deficient mutant was found to be defective for intracellular replication. Thus, these data indicate that C. burnetii encodes a unique subset of bacterial effector proteins translocated into host cells by the Dot/Icm apparatus, and that the cumulative activities exerted by these effectors enables C. burnetii to successfully establish a niche inside mammalian cells that supports intracellular replication
    corecore