162 research outputs found

    SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development

    Get PDF
    Skp1‐Cul1‐F‐box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma‐associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F‐box and leucine‐rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17‐mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17–Sufu axis in the pathogenesis of medulloblastoma

    Inadequate BiP availability defines endoplasmic reticulum stress.

    Get PDF
    How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (Όs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over ”s is restored lead to ”s-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from ”s. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem

    The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K

    Get PDF
    Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity

    Toll-Like Receptor 4 Regulates Chronic Stress-Induced Visceral Pain in Mice

    Get PDF
    Background Functional gastrointestinal disorders, which have visceral hypersensitivity as a core symptom, are frequently comorbid with stress-related psychiatric disorders. Increasing evidence points to a key role for toll-like receptor 4 (TLR4) in chronic pain states of somatic origin. However, the central contribution of TLR4 in visceral pain sensation remains elusive. Methods With pharmacological and genetic approaches, we investigated the involvement of TLR4 in the modulation of visceral pain. The TLR4-deficient and wild-type mice were exposed to chronic stress. Visceral pain was evaluated with colorectal distension. Protein expression levels for TLR4, Cd11b, and glial fibrillary acidic protein (glial cells markers) were quantified in the lumbar region of the spinal cord, prefrontal cortex (PFC), and hippocampus. To evaluate the effect of blocking TLR4 on visceral nociception, TAK-242, a selective TLR4 antagonist, was administered peripherally (intravenous) and centrally (intracerebroventricular and intra-PFC) (n = 10–12/experimental group). Results The TLR4 deficiency reduced visceral pain and prevented the development of chronic psychosocial stress-induced visceral hypersensitivity. Increased expression of TLR4 coupled with enhanced glia activation in the PFC and increased levels of proinflammatory cytokines were observed after chronic stress in wild-type mice. Administration of a TLR4 specific antagonist, TAK-242, attenuated visceral pain sensation in animals with functional TLR4 when administrated centrally and peripherally. Moreover, intra-PFC TAK-242 administration also counteracted chronic stress-induced visceral hypersensitivity. Conclusions Our results reveal a novel role for TLR4 within the PFC in the modulation of visceral nociception and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity.The work described herein was supported by the Alimentary Pharmabiotic Centre, funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (Grant Numbers 02/CE/B124 and 07/CE/B1368 and SFI/12/RC/2273)

    Relationship between Neural Alteration and Perineural Invasion in Pancreatic Cancer Patients with Hyperglycemia

    Get PDF
    Background: Patients with higher levels of fasting serum glucose have higher death rates from pancreatic cancer compared to patients with lower levels of fasting serum glucose. However, the reasons have not been studied. The goal of the current study was to examine the neural alterations in pancreatic cancer patients with hyperglycemia and to identify the relationship between the neural alterations and perineural invasion. Methodology/Principal Findings: The clinical and pathological features of 61 formalin-fixed pancreatic cancer specimens and 10 normal pancreases as controls were analyzed. Furthermore, the expression of Protein Gene Product 9.5 (PGP9.5), Myelin P0 protein (MPP), NGF, TrkA, and p75 were examined by immunohistochemistry. The median number of nerves, the median area of neural tissue, and the median nerve diameter per 10 mm 2 were larger in the hyperglycemia group than those in the euglycemia group (p = 0.007, p = 0.009, and p = 0.004, respectively). The integrated optical density (IOD) of MPP staining was lower in the hyperglycemia group than those in the euglycemia group (p = 0.019), while the expression levels of NGF and p75 were higher in the hyperglycemia group than those in the euglycemia group (p = 0.002, and p = 0.026, respectively). The nerve bundle invasion of pancreatic cancer was more frequent in the hyperglycemia group than in the euglycemia group (p = 0.000). Conclusions/Significance: Nerve damage and regeneration occur simultaneously in the tumor microenvironment o

    Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne

    Get PDF
    The post-translational modification of proteins with polyubiquitin regulates virtually all aspects of cell biology. Eight distinct chain linkage types in polyubiquitin co-exist and are independently regulated in cells. This ‘ubiquitin code’ determines the fate of the modified protein1. Deubiquitinating enzymes of the Ovarian Tumour (OTU) family regulate cellular signalling by targeting distinct linkage types within polyubiquitin2, and understanding their mechanisms of linkage specificity gives fundamental insights into the ubiquitin system. We here reveal how the deubiquitinase Cezanne/OTUD7B specifically targets Lys11-linked polyubiquitin. Crystal structures of Cezanne alone and in complex with mono- and Lys11-linked diubiquitin, in combination with hydrogen-deuterium exchange mass spectrometry, enable reconstruction of the enzymatic cycle in exquisite detail. An intricate mechanism of ubiquitin-assisted conformational changes activate the enzyme, and while all chain types interact with the enzymatic S1 site, only Lys11-linked chains can bind productively across the active site and stimulate catalytic turnover. Our work highlights the fascinating plasticity of deubiquitinases, and indicates that new conformational states can occur when a true substrate, such as diubiquitin, is bound at the active site
    • 

    corecore