
Aberystwyth University

A microbial ecosystem beneath the West Antarctic ice sheet
Christner, Brent C.; Priscu, John C.; Achberger, Amanda M.; Barbante, Carlo; Carter, Sasha P.; Christianson,
Knut; Michaud, Alexander B.; Mikucki, Jill A.; Mitchell, Andy; Skidmore, Mark L.; Vick-Majors, Trista J.; Science
Team, The WISSARD

Published in:
Nature

DOI:
10.1038/nature13667

Publication date:
2014

Citation for published version (APA):
Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S. P., Christianson, K., ... Science Team,
T. WISSARD. (2014). A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512(7514), 310-313.
https://doi.org/10.1038/nature13667

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 03. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/185308401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/nature13667


Acc
ep

ted
 9 

Ju
ly 

20
14

 

 

 

 

A microbial ecosystem beneath the West Antarctic Ice Sheet 

 

Brent C. Christner1*, John C. Priscu2*, Amanda M. Achberger1, Carlo Barbante3, Sasha P. 
Carter4, Knut Christianson5,9, Alexander B. Michaud2, Jill A. Mikucki6, Andrew C. Mitchell7, 
Mark L. Skidmore8, Trista J. Vick-Majors2, & the WISSARD Science Team 

 

1 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; 

2 Department of Land Resources and Environmental Science, Montana State University, 
Bozeman, MT, USA;  

3 Institute for the Dynamics of Environmental Processes – CNR, Venice, and Department of 
Environmental Sciences, University of Venice, Venice, Italy; 

4 Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University 
of California San Diego, La Jolla, CA, USA;  

5 Physics Department, St. Olaf College, Northfield, MN, USA; 

6 Department of Microbiology, University of Tennessee, Knoxville, TN, USA;  

7 Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK; 

8 Department of Earth Science, Montana State University, Bozeman, MT, USA;  

9 Present address: Courant Institute of Mathematical Sciences, New York University, New York, 
NY, USA 

* Correspondence should be addressed to B.C.C. (xner@lsu.edu) or J.C.P. 
(jpriscu@montana.edu)  

  



Acc
ep

ted
 9 

Ju
ly 

20
14

2014‐03‐04222    Page 2 of 33 

Liquid water has been known to occur beneath the Antarctic Ice Sheet for more 

than 40 years1, but only recently have these subglacial aqueous environments been 

recognized as microbial ecosystems that may influence biogeochemical transformations on 

a global scale2-4. Here we present the first geomicrobiological description of water and 

surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial 5 

Lake Whillans (SLW) lies beneath ~800 m of ice on the lower portion of the Whillans Ice 

Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial 

drainage network5. The water column of SLW contained metabolically active 

microorganisms and was derived primarily from glacial ice melt with solute sources from 

lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic 10 

production data together with small subunit rRNA (SSU rRNA) gene sequencing and 

biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited 

by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic 

environments beneath the Antarctic Ice Sheet support viable microbial ecosystems, 

corroborating previous reports suggesting they contain globally relevant pools of carbon 15 

and microbes2,4 that can mobilize elements from the lithosphere6 and influence Southern 

Ocean geochemical and biological systems7.  

Almost 400 subglacial lakes have been identified beneath the Antarctic Ice Sheet8. 

Speculation on the presence of functional microbial ecosystems within these lakes followed their 

discovery1 and motivated the initial studies of samples originating from Subglacial Lake Vostok 20 

(SLV)9,10. However, the body of microbiological data from SLV has been a point of contention, 

primarily because all studies were based on analyses of frozen (i.e., accreted) lake water samples 

recovered from a borehole containing a contaminated hydrocarbon drilling fluid3. Our report 
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documents the first analysis of water and surficial sediments collected directly from a subglacial 

lake beneath the West Antarctic Ice Sheet (WAIS) using microbiologically clean drilling and 25 

sampling techniques11. 

The water residence time for SLV exceeds 10,000 years12, while that for “active” lakes 

such as SLW is on the order of years to decades5,8. SLW is part of a network of three major 

reservoirs beneath the lower ice plain of the WIS that regulate water transport to a subglacial 

estuary at the grounding zone, linking the hydrological system to the sub-ice-ocean cavity 30 

beneath the Ross Ice Shelf5,13 (Fig. 1). During two separate drainage events in 2006 and 2009, 

SLW discharged ~0.15 km3 of water over two six month periods, each time lowering the lake 

level by ~5 m5,14. The drilling location to access SLW was selected using reflection seismology13 

and ice-penetrating radar14 data, and corresponded to the region of maximum predicted water 

column thickness, lowest hydropotential, and largest satellite-measured surface elevation 35 

changes (Fig. 1).  

A hot water drilling system was used to create a ~0.6 m diameter borehole through the 

overlying ice sheet into SLW, allowing for physical measurements and the direct collection of 

water column and sediment samples. Drilling and lake entry procedures followed 

recommendations for environmental protection of subglacial aquatic environments11, 40 

incorporating rigorous measures to reduce the introduction of foreign microbiota and material 

into SLW and the interconnected subglacial drainage system. Video inspection of the borehole 

and temperature measurements revealed that the ice-water interface occurred at 801±1 meters 

below the surface (mbs) and the lake depth at the borehole site was ~2.2 m at the time of 

sampling. Two borehole deployments of a conductivity, temperature, and depth (CTD) sonde 45 

together with data from three discrete hydrocasts showed that SLW had an average in situ 
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temperature of -0.49oC, pH of 8.1, and conductivity of 720 S cm-1; properties that were 

distinctly different from the borehole water (Table 1).  

Water from three discrete hydrocasts in SLW had near identical geochemical 

compositions based on major ion chemistry (Table 1) and all showed oxygen under-saturation 50 

(~16% of air saturated water). Since there is no definitive evidence of lake water freezing to the 

bottom of the overlying ice sheet as in SLV12, it is unlikely that lake water constituents in SLW 

are influenced significantly by freeze concentration. The δ18O-H2O for SLW (-38.0 ‰) was 

similar to glacial ice sampled ~10 m above the ice-water interface from the neighboring Kamb 

Ice Stream15 (KIS; -38 to -39 ‰), indicating that glacial melt was the dominant water source for 55 

SLW. A considerable fraction of the major anions and cations originated from mineral 

weathering, with a minor seawater component based on Cl- to Br- ratios (Extended Data Table 

1). Crustally-derived non-seawater solutes in SLW showed a dominance of weathering products 

from silicate minerals (Na+ + K+) over carbonate minerals (Mg2+ + Ca2+), similar to other sub 

ice-sheet systems in Greenland and Antarctica6,7 (Supplemental Discussion). The dominant non-60 

seawater anions (SO4
2- and HCO3

-) were likely products of sulfide oxidation, carbonation 

reactions, and carbonate dissolution7. Sulfide oxidation and carbonation reactions have been 

demonstrated to be microbially driven in subglacial systems and linked to enhanced rates of 

mineral weathering16. Although clay minerals are a potential source of the relatively high F- 

concentrations in SLW (Table 1), subglacial volcanism in the upstream catchment supplying 65 

SLW17 may also contribute.  

Ammonium accounted for 73% of the dissolved inorganic nitrogen pool within the water 

column of SLW (Table 1). Given that mineral sources of ammonium are minor, the majority of 

the ammonium is likely from microbial mineralization. Soluble reactive phosphorus levels were 
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similar to the total inorganic nitrogen pool (dissolved N:P molar ratio of 1.1), implying a 70 

biologically nitrogen deficient environment, relative to phosphorus. Unfortunately, sample 

limitations precluded measurement of dissolved organic N and P concentrations to assess their 

nutritional contribution. In addition to its nutritional role, ammonium is also an energy source for 

chemolithoautotrophic ammonium oxidizing bacteria and archaea. Evidence for complete 

nitrification in the aerobic SLW water column was supported by ∆17O-NO3 values (-0.1 ‰ to 0.2 75 

‰) that indicated microbial processes rather than atmospheric input was the dominant source for 

nitrate in the lake18. Particulate organic C (PC) to N (PN) molar ratios in the water column 

exceeded that of actively growing bacteria by almost 15-fold, suggestive of elevated levels of 

nitrogen poor detritus. Dissolved organic carbon (DOC) in the water column averaged 221 ± 55 

µmol L-1, which is ~five times greater than average values for the deep ocean19 and similar to the 80 

maximum range estimate for SLV9,20 (86-160 mol L-1). Acetate and formate concentrations in 

the water column averaged 1.3 and 1.2 µmol L-1, respectively, indicating that at least a portion of 

the DOC pool was labile. The conductivity and microbiological data (Table 1 and Figure 3) 

showed that little mixing occurred between the borehole water and lake, supporting that DOC in 

the water column originated from SLW. The lack of winnowing in sediment cores from SLW, in 85 

concert with the fact that similar DOC concentrations were obtained as the overlying ice moved 

~4m during the course of our science operations, provided evidence that water column DOC did 

not result from sediment disturbance during drilling operations. The DOC in SLW most likely 

originates from upward diffusion of DOC associated with ancient marine sediments4 (SLW 

sediment surface area: depth ratio ~30,000), chemoautotrophic production, or from a 90 

combination of both sources.  
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The average cell density in the SLW water column was 1.3 x 105 cell mL-1 (Table 1); 

microscopy revealed the presence of numerous morphotypes, approximately 10% of which were 

filamentous (Fig. 2). Cellular ATP, a proxy for viable biomass, in SLW was 3.7 pmol ATP L-1 

(Table 1). Cell and ATP concentrations were 188- and 93-fold higher, respectively, than those 95 

observed in the borehole water before breakthrough to SLW. Carbon biomass estimates for SLW 

water based on the ATP data (480 ± 100 ng C L-1) were 3 to 50-fold higher than those observed 

beneath the Ross Ice Shelf at site J921. Analysis of SSU rRNA sequences amplified from the 

water column samples showed that the community was similar among replicate lake samples, 

was distinct from the drilling water (Fig. 3a), and contained at least 3,931 operational taxonomic 100 

units (OTUs; Extended Data Table 2). An OTU closely related to the nitrite oxidizing 

betaproteobacterium ‘Candidatus Nitrotoga arctica’22 comprised 13% of the sequence data, and 

many of the most abundant phylotypes were closely related to chemolithoautotrophic species that 

use reduced nitrogen, iron, or sulfur compounds as energy sources (Fig. 3b; Supplemental 

Discussion). Two of the abundant water column OTUs had high identity (>99%) to SSU 105 

sequences previously reported from sediments sampled beneath the KIS23 (Fig. 3b). Preliminary 

attempts to detect eukaryotic SSU sequences in the SLW water column were unsuccessful.  

Average dark 14C-bicarbonate incorporation in the water column samples (32.9 ng C L-1 

d-1; Table 1) exceeded average rates of heterotrophic production based on 3H-thymidine (13.7 ng 

C L-1 d-1) and 3H-leucine (2.9 ng C L-1 d-1) incorporation by 2- and 11-fold, respectively. 110 

Assuming that the thymidine and leucine values represent net incorporation, and that respiratory 

losses were 87% of net incorporation (i.e., average for Antarctic McMurdo Dry Valley lakes24), 

the gross bacterial carbon demand (net productivity + respiration) would be 105 and 23 ng C L-1 

d-1, respectively. If dark 14C-bicarbonate incorporation represents new organic carbon production 
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via chemoautotrophy, the observed rates would meet between 31% and 143% of the 115 

heterotrophic carbon demand in the system. It should be noted that the effect of pressure (~ 8 

MPa in SLW) was not tested and may influence the absolute rates of metabolism measured. 

Pore water conductivity (860 µS cm-1) and pH (7.3) in SLW’s surficial sediments were 

within 20% of the lake water values (Table 1). Upward diffusion of ions from sediment pore 

water is presumably the primary source of the ions in the water column. Average surficial 120 

sediment PC and PN concentrations were 384.2 and 21.5 µmol g dry wt-1, respectively, and 

represented 0.43% and 0.03% of sediment dry weight. The molar PC:PN ratio in the surficial 

sediment layer (17.9) was 3.7 times lower than that in water column (Table 1), indicative of 

nitrogen enriched sedimentary particulate organic matter, with respect to water column 

suspensoids. Based on rates of thymidine and leucine incorporation, average heterotrophic 125 

production in the surficial sediment was 46.6 and 0.9 ng C d-1 g dry wt-1, respectively. 

Approximately 75% of the OTUs from the surficial sediments classified within the 

Proteobacteria (Fig. 3a). Although many phylotypes in the water column were also abundant in 

the surficial sediments (Fig. 3b), ~70% of the OTUs were unique to the sediment environment. 

The nearest neighbors of the most abundant phylotypes in the surface sediments were 130 

chemolithoautotrophs or species that use C1 hydrocarbons as carbon and energy sources (Fig. 

3b, Supplemental Discussion).  

Our data show that SLW supports a metabolically active and phylogenetically diverse 

ecosystem that functions in the dark at subzero temperatures, confirming more than a decade of 

circumstantial evidence regarding the presence of life beneath Antarctica’s ice sheet9,10,21,23. Rate 135 

experiments revealed that chemoautotrophic primary production in SLW is adequate to support 

heterotrophic metabolism in the subglacial ecosystem. The abundance of taxa related to 
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nitrifiers22,25 in concert with elevated ammonium and ∆17O-NO3 values near 0 ‰ in the water 

column (Table 1) implies that nitrification may be a fundamental chemoautotrophic pathway of 

new organic carbon production in SLW. Similar conclusions regarding the ecological 140 

significance of nitrification have been drawn for the water column beneath the Ross Ice Shelf26 

and in McMurdo Sound27. Given the prevalence of subglacial water in Antarctica8, our data from 

SLW lead us to contend that aquatic microbial ecosystems are common features of the 

subsurface environment that exists beneath the ~107 km2 Antarctic Ice Sheet, which may have 

significant roles in stimulating Southern Ocean primary productivity7. 145 
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Methods 220 

Site selection and description. SLW was discovered using satellite laser altimetry and 

initially identified as a region (59 ± 12 km2) of temporally varying surface elevation; it is one of 

11 active subglacial lakes documented beneath the WIS5. SLW fills and drains every few years 

as part of a series of hydrologically linked subglacial lakes in the area, eventually draining to the 

ocean5,28,31. Ice-penetrating radar and active-source seismic data estimated that the maximum 225 

lake depth does not exceed 8 and 15 m at low- and high-stand, respectively14,32. A lake-level rise 

of ~5 m from the low-stand lake level plus ice-flexural effects are sufficient to initiate flow over 

a drainage divide and trigger lake drainage. During a drainage event, ~0.15 km3 of water drains 

in a six-month timeframe at a water flux of ~10 m3 s-1 (ref 5, 14). Thus, SLW is a shallow active 

hydrological reservoir beneath an active ice stream. The deepest point in the seismically detected 230 

water column was selected as the drill site (S 84.240° W 153.694°; Fig. 1). Drilling and 

subglacial lake access occurred during a near low-stand state in late January 201333.  

Hot water drilling and clean access to SLW. A hot water drilling system was used 

between 23-27 January 2013 to melt through the ~801 m thick ice sheet, creating an access 

borehole (minimum diameter ~ 60 cm) for direct sampling and to conduct in situ measurements 235 

of the SLW water column and sediments. Microbial cells in the drilling water and on exposed 

surfaces of the hose, cables, and deployed equipment were reduced and killed through the use of 

four complementary technologies: (1) filtration, (2) UV irradiation, (3) pasteurization, and (4) 

disinfection with 3% w/v H2O2
11. The drilling water, derived from the overlying ice sheet, was 

continuously circulated through a water treatment system that removed micron and sub-micron 240 

sized particles (>0.2 m), irradiated the drilling water with two germicidal wavelengths of UV 

radiation (185 nm ~40,000 µW s-1 cm-2 and 254 nm ~175,000 µW s-1 cm-2), and pasteurized the 
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water at 90oC to reduce the viability of persisting microbial contamination. Ports were plumbed 

along the systems’ flow path, allowing discrete water samples to be obtained before and after 

each stage11. The drill hose and instrument cables were deployed at a rate no greater than 1 m s-1 245 

through a custom borehole collar that contained 12 amalgam pellet UV lamps, providing a 

cumulative germicidal UV dosage of at least 40,000 µW s-1 cm-2 (Arapahoe SciTech). All 

borehole sampling tools and instruments were spray-saturated with 3% w/v H2O2 and staged in 

sealed polyethylene bags until tool deployment. Single-use protective apparel (Tyvek®) was 

worn by all personnel during borehole science operations. The efficacy of the clean access 250 

technology and procedures were tested thoroughly before use in the field and are detailed 

elsewhere11. 

Drilling was conducted at a flow rate of ~136 L min-1 to ~700 mbs, whereupon the drill 

was withdrawn, the borehole was inspected with video, and a hydrocast was conducted at 672 

mbs to measure the chemical and microbiological properties of the borehole water. To ensure 255 

that borehole water did not enter the lake upon breakthrough, the borehole hydrostatic pressure 

was reduced by ~35% (i.e., the water level was lowered from 80 to 108 mbs) below the expected 

equilibration level for 800 m of ice14. Drilling subsequently proceeded at the reduced flow rate of 

19 L min-1, and at 0802 on 27 January (UTC+12), the load on the hose diminished as the drill 

reached ~801 mbs. Two minutes later, the head above the borehole water return pump (stationed 260 

at 110 mbs) rose rapidly and remained at ~80 mbs, confirming hydrostatic equilibration between 

the borehole and lake water (i.e., breakthrough to SLW). Importantly, the rise in borehole water 

confirmed that no drilling water entered the subglacial environment during breakthrough. To 

maintain the borehole and offset freeze back, thermal energy was added to the borehole by 

redeploying the drill at a flow rate of ~135 L min-1. Borehole reaming was conducted after 265 



Acc
ep

ted
 9 

Ju
ly 

20
14

2014‐03‐04222    Page 15 of 33 

breakthrough to the lake by slowly withdrawing the drill (~0.01 m s-1). A second 24 h reaming 

occurred 32 h after initial penetration of the lake to ensure successful deployment of all sampling 

tools. All in situ measurements and discrete sampling occurred over a 4 d period.  

Temperature and depth. A SBE 19plusV2 SeaCAT Profiler CTD (Seabird Electronics, 

Inc.) was used to measure temperature and depth within the borehole and lake water column. The 270 

instrument was deployed in profiling mode and lowered at a rate of ~0.5 m s-1. Borehole depths 

are referenced to the snow surface in proximity to the borehole. The water column depth in SLW 

(i.e., the distance between the ice-water interface and underlying sediments) was estimated using 

CTD data to distinguish differences in water mass upon entry to the lake water column from the 

borehole. Lake depth was obtained from the top of the lake water mass to the depth where the 275 

sonde contacted the bottom. This depth estimate was corroborated with a calibrated cable 

attached to a real-time borehole video camera. 

Water and sediment sampling. Following Priscu et al.11, discrete samples of the drilling 

water (~20 L) were obtained at two time points during the drilling process. Samples of water 

from the input to the filtration module, input to the borehole, water returning from the borehole, 280 

and a hydrocast at 672 mbs before lake entry were collected and concentrated onto 142 mm 0.2 

m Supor membrane filters (Pall Corporation). The filters were processed identically to those 

from the SLW water column (see below). 

Three discrete water samples were collected between 28 and 31 January 2013 at 

approximately mid-depth in the ~2.2 m SLW water column. Bulk water was collected using 10 L 285 

Niskin bottles and transferred via acid (10% HCl) leached silicon tubing to clean bottles 
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following the limnological procedures outlined by the McMurdo Long Term Ecological 

Research (LTER) Program34.  

SLW water column particulate matter for nucleic acid analysis was filter concentrated in 

situ using a Large Volume Water Transfer System (WTS-LV) that was modified to fit the 290 

minimum borehole diameter of 30 cm (McLane Research Laboratories Inc.). The WTS-LV has a 

3-tier 142 mm filter holder that accepts filters in series for size fractionation of particulates in the 

sample water. There were three separate casts of the WTS-LV in SLW and between 4.9 and 7.2 

L of water was filter-concentrated during each 2 h deployment. In cast 1, the filter housing was 

loaded with a 10 µm nylon mesh screen together with 3 µm and 0.2 µm Supor membrane filters. 295 

The filters for cast 2 and 3 had pore sizes of 3.0 µm, 0.8 µm, and 0.2 µm. Immediately after 

recovery, the filter housing unit was detached from the pump and opened in a class 100 laminar 

flow hood. The filters were placed in sterile 142 mm petri dishes, sliced into quarters with a 

clean scalpel, and transferred to a cryovial that contained 7 mL of DNA lysis solution (40mM 

EDTA pH 8.0, 50 mM tris pH 8.3, 0.73 M sucrose). The preserved samples were immediately 300 

frozen for transport to McMurdo Station and stored at -80oC.  

Surficial sediments were collected using a multicoring device (Uwitec) that had a core 

barrel inner diameter of 59.5 mm. Sediment pore water was obtained by inserting Rhizon 

samplers35 (0.2 m pore size) through predrilled holes in the core barrel liner and extracted under 

negative pressure created with a 10 mL sterile syringe. Surficial sediment (0 to 2 cm depth) from 305 

the cores was sampled inside a class 100 clean hood using a cleaned core cutter (Uwitec). The 

sediment samples for molecular biological analysis were placed in 60 mL sterile Nalgene bottles 

containing 10 mL of the DNA lysis solution and frozen. 
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Specific electrical conductivity (EC @ 25 oC) and pH of the lake and sediment pore water 

were determined using a YSI model 3252 probe connected to a YSI model 3100 conductivity 310 

meter and a Beckman model 200 pH meter. Both probe and meter combinations were calibrated 

immediately before sample measurements were made. 

Inorganic and organic chemistry. Particulate organic C (PC) and N (PN) samples from 

the water column were vacuum (~0.3 atm) filtered onto pre-combusted (450oC for 4 h) Whatman 

GF/F filters and analyzed on a CE Instruments Flash EA 112 (ThermoQuest, San Jose, CA). The 315 

filters and sediment samples which had been dewatered via centrifugation were fumed for 24 h 

over fresh 12 M HCl to remove inorganic carbon and dried for 24 h at 90°C before analysis. 

Dissolved oxygen was measured using the azide modification of the mini-Winkler titration36. 

Dissolved inorganic carbon was measured by infrared gas analysis of acid sparged samples. 

Samples for dissolved inorganic N and P were filtered through pre-combusted and 1% HCl 320 

leached GF/F filters, collected in 1% HCl leached HDPE bottles, and frozen for shipment to the 

US where nitrate, nitrite, ammonium, and soluble reactive P were analyzed colorimetrically34. 

Major ions and organic acids from SLW water and sediment porewater were analyzed on a 

Metrohm ion chromatograph using a C4 cation column and a Supp 5 anion column.  

Stable isotope analysis. Stable isotope measurements were conducted at the Isolab 325 

(University of Washington, Seattle). Measurements of oxygen isotope ratios of lake water and 

pore water samples were made using a Picarro cavity ring-down laser spectrometer. Nitrate for 

Δ17O determination in the water samples was concentrated using an anionic resin37 followed by 

the bacterial reduction and thermal decomposition method38,39. Δ17O-NO3 was analyzed with a 

Finnigan Delta Plus Advantage isotope ratio mass spectrometer. Isotope measurements are 330 
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reported using standard δ notation in per mille relative to Vienna Standard Mean Ocean Water 

(VSMOW). 

pH and oxidation-reduction measurements. Sediment pH was measured with a 

Microelectrodes Inc. MI-407P needle pH electrode and a MI 401 Ag/AgCl2 micro reference 

electrode, calibrated with Orion low ionic strength buffers (pH 4, 7, 10). Oxidation-reduction 335 

potential (ORP) was measured in SLW water with a glass epoxy platinum electrode and a MI 

401 Ag/AgCl2 micro reference electrode calibrated with Zobell’s solution and corrected to the 

standard hydrogen electrode (SHE).  

Cell and ATP concentration. Samples for cell enumeration from water and sediment 

were collected in combusted glass bottles and fixed in sodium borate-buffered formalin (2% v/v). 340 

Sub-samples were filtered on black 0.2 µm polycarbonate membrane filters, stained with SYBR 

Gold (Life Technologies), and immediately counted via epifluorescence microscopy. Sediment 

interference did now allow accurate determination of cell density in sediment samples. Cellular 

ATP was measured in triplicate as previously described11 and viable biomass was estimated from 

the ATP concentration using a carbon to ATP ratio of 250 by weight10,21. 345 

Scanning electron microscopy. Samples for scanning electron microscopy (SEM) were 

fixed with either 2% (w/v) formalin or 0.5% (w/v) glutaraldehyde and filtered onto a 13 mm 

diameter 0.2 m polytetrafluoroethylene (PTFE) filters. Following ethanol dehydration and 

critical point drying, the filters were attached to an aluminum stub, coated with either gold or 

palladium, and observed on a Zeiss Supra 55VP Field Emission Scanning Electron Microscope. 350 

Heterotrophic and chemoautotrophic production. Heterotrophic productivity was 

measured using [3H]methyl-thymidine incorporation into DNA40 and [3H]leucine incorporation 
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into protein41. Samples [1.5 mL; 10 and 5 live and 10 and 5 trichloroacetic acid (TCA)-killed 

controls for casts 1 and 3, respectively] were incubated with 20 nM radiolabeled thymidine 

(specific activity 20 Ci mmol-1) or leucine (specific activity 84 Ci mmol-1) at 4C in the dark for 355 

175 h (average). A separate time-course experiment (data not shown) revealed that incorporation 

was linear over this incubation period. Incubations were terminated by the addition of 100% w/v 

cold TCA (5% final). Following centrifugation, a series of washes with cold 5% TCA and cold 

80% v/v ethanol were performed. The final pellet was dried overnight at ~25C. Radioactivity in 

the pellet was determined with a calibrated liquid scintillation counter following the addition of  360 

1 mL of Cytoscint ES (MP Biomedicals). The rates of thymidine and leucine incorporation (nM 

TdR d-1 or nM Leu d-1) obtained at the incubation temperature (4oC) were converted to the in situ 

temperature of -0.49C using an energy of activation of 48,821 J mol-1 determined from 

temperature gradient experiments (data not shown). Rates of macromolecular synthesis were 

converted to carbon production using 2.0 x 1018 cells mol-1 thymidine42 and 1.42 x 1017 cells mol-365 

1 leucine43, in concert with a cellular carbon content of 11 fg C cell-1 (ref 44). For the sediment 

assays, a slurry was created by adding 1 gram wet weight of sediment to 10 mL of 0.2 µm-

filtered SLW water. The processing of the sediment slurries was identical to water samples 

except a total of three 80% ethanol rinses were performed to enhance the removal of 

unincorporated substrate. After drying, 200 µL of tissue solubilizer (ScintiGest; Fisher 370 

Chemical) was added to each vial. The metabolic rate data were normalized per gram dry weight 

of sediment.  

Dark CO2 fixation was determined in sterile 40 mL glass vials filled to the top with 

sample (leaving no headspace) and capped with PTFE lined caps (10 and 5 live and 10 and 5 

TCA-killed for casts 1 and 3, respectively). The vials were amended with sterile 14C-labeled 375 
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bicarbonate (stock concentration =0.1144 mCi mL-1) to a final experimental concentration of 

0.01 mCi mL-1 and incubated in the dark at 4oC for 281 h (average). A separate time-course 

experiment (data not shown) revealed that incorporation was linear over this incubation period. 

Incubations were terminated by the addition of cold TCA (2.5% w/v final concentration) and 

filtering onto 0.2 m polycarbonate filters. The filters were placed in 20 mL scintillation vials, 380 

acidified with 0.5 mL of 3N HCl, and dried at 60oC for 24 h. Radioactivity on the filters was 

determined with a calibrated liquid scintillation counter following the addition of 10 mL of 

Cytoscint ES (MP Biomedicals).  

Molecular and phylogenetic analysis of SSU rRNA gene sequences. DNA was 

extracted from a portion of each filter (1/8 of a 142 mm filter) using the Power Water DNA 385 

Isolation Kit and from sediments (~0.5 g wet weight) with the Power Soil DNA isolation kit 

(MO BIO Laboratories, Inc.). The extraction procedures followed those recommended by the 

manufacture.  

The SSU rRNA gene was amplified using the oligonucleotide primers 515F and 806R, as 

described previously45. Amplification reactions (50 L each) were performed using 5 units of 390 

AmpliTaq Gold DNA polymerase LD (Invitrogen), 1 x PCR Gold Buffer (Invitrogen), 3.5 mM 

MgCl2, 10 pmol of each primer, 200 M dNTPs, and 0.1 - 3 ng of DNA template   The optimum 

number of cycles for PCR was determined by successively lowering the cycle number so that 

false positive amplification was prevented while amplification was possible for the lowest 

biomass samples analyzed. After 9 min. of heat activation at 94˚C (i.e., AmpliTaq Gold DNA 395 

polymerase is a chemical hot-start enzyme), 35 cycles of PCR were performed using the 

following amplification conditions: denaturation at 94 ˚C for 45 s, annealing for 90 s at 50˚C, 

and elongation at 72˚C for 90 s, with a terminal elongation at 72˚C for 10 min. The concentration 
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of the PCR products were determined using the Quant-iT PicoGreen dsDNA Assay Kit 

(Invitrogen). The amplicons were pooled and cleaned with the MoBio UltraClean PCR Clean-Up 400 

Kit. Sequencing was performed using the Illumina MiSeq platform (Selah Genomics, Greenville, 

SC). 

Paired end sequence reads were assembled and quality filtered using the Mothur46 

phylogenetic analysis pipeline (v1.33.2). The sequences were aligned with the SILVA 

Incremental Aligner47 (SINA v1.2.11; database release 115). The aligned reads were checked for 405 

chimeras using the Uchime algorithm48, as implemented within Mothur, and chimeric sequences 

were removed from the data. Sequences with >97% SSU rRNA gene sequence similarity were 

clustered into an OTU and representative sequences for each OTU were chosen for classification 

using the SILVA database. Diversity and richness estimates were calculated in Mothur46. 

Singletons were excluded from further analyses, and for simplicity of presentation, phyla 410 

represented by <1% of the sequence reads were grouped into the unclassified category (Fig. 3a). 

Community comparisons using Yue and Clayton theta similarity coefficient analysis and 

Weighted Unifrac were also performed within Mothur. MEGA 5.2 software was used for 

phylogenetic analysis using maximum likelihood, the Jukes-Cantor nucleotide substitution model 

(1000 iterations), and a 253 nucleotide alignment. The SSU sequence data were deposited in the 415 

NCBI SRA database under the accession number SRP041285. Attempts to detect SSU sequences 

from eukaryotes were based on previously published methods50.        
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Extended data table legends 

Extended Data Table 1 Crustal and seawater components to SLW waters 

Extended Data Table 2 Summary of parameters for the SLW SSU gene sequence data 
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Supplementary Information 
 

1. Extended Data Table 1. This table contains information on the crustal and seawater 

components to SLW waters. 

2. Extended Data Table 2. This table contains information on the SLW SSU gene 

sequence data. 

3. Supplemental Information. This file contains the Supplemental Discussion and 

additional references. 
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Table 1 Biogeochemical data from the SLW borehole, water column, and surficial 
sediments 

Parameter Borehole a Water Column b Sediments c 
Physical 
  Temperature (oC) d -0.17 (0.25) -0.49 (0.03) n.d. 
  Conductivity (S cm-1 @ 25oC) e 5.3 720 (10) 860  
  pH e 5.4 8.1 (0.1) 7.3  
  Redox [mV (SHE)] e n.d. 382 n.d. 
Microbiological 
  Cell density (cell mL-1) 6.9x102 (51.0) 1.3x105 (0.4x105) n.d. 
  Cellular ATP (pmol L-1) 0.04 (0.002) 3.70 (1.00) n.d. 
  3H-thymidine f  n.d. 13.7 (1.3) 46.6 (5.6) 
  3H-leucine f  n.d. 2.9 (0.4) 0.9 (0.04) 
  14C-bicarbonate n.d. 32.9 (4.2) n.d 
Carbon and nutrients 
  Dissolved Oxygen (µmol L-1) n.d. 71.9 (12.5) n.d. 
  DIC (mmol L-1) n.d. 2.11 (0.03) n.d. 
  DOC (µmol L-1) n.d. 221 (55) n.d. 
  Acetate (µmol L-1) n.d 1.3 (0.2) n.d 
  Formate (µmol L-1) n.d 1.2 (0.3) n.d 
  PC g n.d. 78.5 (7.4) 384.2 (37.0) 
  PN g n.d. 1.2 (0.4) 21.5 (1.7) 
  PC:PN (molar) n.d. 65.4 (0.3) 17.9 (0.4) 
  NH4

+ (mol L-1) n.d. 2.4 (0.6) n.d. 
  NO2

- (mol L-1) n.d. 0.1 (0.1) n.d. 
  NO3

- (mol L-1) n.d. 0.8 (0.5) 9.1 
  PO4

3- (mol L-1) n.d. 3.1 (0.7) 7.3 
  DIN:SRP (molar) n.d. 1.1 (0.4) n.d. 
Major ions (eq L-1) 
  Na+ n.d. 5276 (18) 6977 
  K+ n.d. 186 (4.2) 293 (1.0) h 
  Mg2+ n.d. 507 (12) 596 (101) h 
  Ca2+ n.d 859 (29) 860 (104) h 
  F- n.d. 31.5 (0.4) 34.0 
  Cl- n.d. 3537 (3.4) 4943 
  Br- n.d. 6 (0.01) 7 (0.4) h 
  SO4

2- n.d. 1111 (0.4) 1230 
  HCO3

- n.d 2111 (35) 2238 i 
Stable isotopes j 
18O-H2O  n.d. -38.0 ‰ -37.5 ‰ 
17O-NO3

-  n.d. -0.1 to 0.2 ‰ n.d. 
 

a Borehole water sampled by hydrocast at 672 mbs before lake entry. 
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b Water column data represent averages (±SD) from hydrocasts collected on 28 January 2013 

(cast 1), 30 January (casts 2), and 31 January (cast 3) 2013, except for 3H-leucine incorporation, 

which is an average of cast 1 and 3 only. 

c The sediment data correspond to measurements from the upper 2 cm of surficial sediments. 

d Average (±SD) of in situ measurements made through the lake water column at ~10 cm 

intervals with a SBE 19plusV2 SeaCAT Profiler CTD on 28 January and 30 January 2013.  

e Based on measurements from discrete water samples brought to the surface. 

f Macromolecular incorporation rates of tritium were converted to cellular carbon and presented 

along with bicarbonate incorporation as average ng C L-1 d-1 (±SD) for water or average ng C d-1 

gram dry weight -1 (±SD) of sediment.  

g Average (±SD) mol L-1 for water and average (±SD) mol g dry weight sed-1 for surficial 

sediment. 

h Surficial sediment porewater major ions are the average (±range) of two replicates. 

i Calculated based on charge balance. 

j Values are per mille and reported relative to V-SMOW. The range of 2 measurements is given 

for 17O-NO3
-. 

n.d. = no data available.  
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Figure legends 

Figure 1 Locator map of the WIS and SLW. (a) The yellow box and star indicates the general 

location of the lake and the drill site; maximum extent of SLW and other lakes28 under the ice 

stream are shaded in blue; predicted subglacial water flowpaths through SLW and other 

subglacial lakes are represented by blue lines with arrows; the black line denotes the ice-sheet 

grounding line at the edge of the Ross Ice Shelf29. Inset (expanded from area in yellow box) 

shows details of SLW with both maximum (solid blue line) and minimum lake extent (shaded 

blue area), hydropotential contours (white isolines; 25 kPa interval), and drill site (yellow star; S 

84.240o W 153.694o). Background imagery is MODIS MOA30.   

Figure 2 Morphological diversity of microbial cells in the SLW water column. (a) 

Epifluorescence micrograph showing a variety of cell morphotypes, which was confirmed by 

SEM (b-d). The yellow arrows in the SEM images indicate cells with (b) rod, (c) curved rod, and 

(d) coccoid morphologies. Scale bar = 2 m.  

Figure 3 Phylogenetic analysis of SSU gene sequences obtained from the SLW water column, 

surficial sediment (0-2 cm), and drilling water. (a) Cluster analysis of the microbial phylogenetic 

structure in the samples (top) and the relative abundance of bacterial and archaeal phyla in the 

water and sediment samples (bottom). The Proteobacteria were split into classes for greater 

detail. The asterisk indicates statistical significance (AMOVA, p-value <0.001). (b) Phylogenetic 

analysis of bacterial and archaeal OTUs abundant in the SLW water column and sediments. The 

accession numbers of nearest neighbors and reference taxa are listed parenthetically. Bootstrap 

values are shown at the nodes. SLW phylotypes are bolded and followed by the percentage each 
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represented in the water column (blue) and sediment (red) libraries. The scale bar indicates the 

number of nucleotide substitutions per position. 
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Thiobacillus denitrificans
(NR074417.1)

OTU 1767 ( , )<0.1% 6.0%

KIS clone B26
(EU030484.1)

OTU 5861 ( , )<0.1% 2.2%

Methylobacter tundripaludum SV96
(NR042107.1)

Ferroglobus placidus
(NR074531.1)

‘Candidatus Nitrososphaera viennensis’
(FR773158.1)

‘Candidatus Nitrososphaera gargensis’
Ga9.2 (NR102916.1)

OTU 1005 ( , )2.5% <0.1%

‘Candidatus Nitrosoarchaeum koreensis’ MY1
(HQ331116)

‘Candidatus Cenarchaeum symbiosum’
(AF083072)

‘Candidatus Nitrosopumilus maritimus’ SCM1
(NR102913.1)
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Extended Data Table 1 │ Crustal and seawater components to SLW waters  

 μeq L-1 

Sample Na+ K+ Mg2+ Ca2+ F- Cl- SO4
2- HCO3

- 

SLW 
Average * 

5276 186 507 859 31.5 3537 1111 2111 

Sea water 
component † 

3038 66 691 132 0.4 3537 366 16 

Non-seawater, 
crustal 
weathering 
component ‡ 

2239 120 -183 § 726 31.1 0 745 2096 

 

* Average values for hydrocasts 1, 2 and 3. 

† Calculated using Cl− concentrations and ratios of each species to Cl− in seawater in μeq L-1; 

Na+ 0.859, K+ 0.019, Mg2+ 0.195, Ca2+ 0.037, F- 0.00013, SO4
2- 0.103, and HCO3

- 0.00449. 

‡ Calculated by subtracting the seawater component from the average SLW solute 

concentration for each ion. 

§ Negative values indicate the potential for ion exchange of Mg2+ with other cations on clay 

minerals present in suspended sediments of SLW. 
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Extended Data Table 2 │Summary of parameters for the SLW SSU gene sequence data  

Site 
 

Number of 
Sequences * 

 
Number of 

OTUs † 

 

Coverage ‡ 

 
Inverse 
Simpson 
Diversity 

Index ‡ 

 
Shannon 
Diversity 

Index ‡ 

 
 

Chao 
Richness 

Estimator ‡ 

 
Drill and borehole 
water 

984,412 962 99.8% 11.0 3.4 
 

5,370 

SLW water 
column 

2,686,526 3,931 99.5% 35.3 4.9 
41,603 

SLW sediments 333,600 2,424 97.3% 31.8 5.1 42,079 

 

* Sequences remaining after quality filtering, and removal of chimeric sequences and singletons.  

† OTUs that passed quality filtering, excluding singletons. 

‡ Calculated using Mothur46.  



Acc
ep

ted
 9 

Ju
ly 

20
14

Supplementary Information       2014-03-04222 

 

Supplementary Discussion  

 

Solute sources for SLW waters. The Cl- to Br- ratios of SLW waters averaged 0.00164, 

which is close to that for seawater (0.00156)49. Thus a parsimonious assumption is that all Cl- 

and Br- in SLW was from a seawater source. The average Cl- concentration of 3.5 mmol L-1 in 5 

SLW represents a dilution relative to seawater of ~154-fold, indicating that seawater was a 

volumetrically minor contribution to the lake water. The seawater component for other major 

anions and cations can then be calculated using Cl− concentrations and ratios of each species to 

Cl− in seawater in μeq L-1 (Extended Data Table 1). The crustally-derived component of solute to 

SLW was determined by subtracting the seawater values for individual ions from the average 10 

SLW composition (Extended Data Table 1). This calculation results in negative values for Mg2+, 

indicating a deficit of Mg2+ relative to seawater ratios. A process that could account for the Mg2+ 

deficit is an ion exchange reaction with other cations on clay minerals present in suspended 

sediments of SLW. Theoretical and observational data indicate that seawater may penetrate no 

further than a few kilometers inland of the low-tide grounding line, making a seawater incursion 15 

to SLW (~100 km from the grounding line) extremely unlikely.  Therefore, we hypothesize that 

the seawater source is from pre-existing marine pore waters in sediments beneath and upstream 

of SLW.  

The inorganic nitrogen pool within the water column of SLW was dominated by 

ammonium relative to nitrite and nitrate (Table 1). Since mineral sources of ammonium are 20 

minor, the majority of the ammonium is presumed to originate from the microbial mineralization 

of nitrogen-containing organic material in the sediments, which could diffuse into the water 

column and also be transported to SLW from upstream portions of the subglacial hydrological 
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network.  A 1:1 relationship would be expected between NH4
+ loss and NO3

- gain unless N2O or 

other intermediates were being produced by nitrification. Given the low oxygen concentrations, 25 

high NH4
+, and SSU sequence data suggesting that nitrifying taxa were abundant in the SLW 

water column (Fig. 3b), the production of N2O is likely51. Unfortunately, we do not have N2O 

concentration data for SLW water. The unexpectedly low nitrate level may also result from 

denitrification in the sediment surface layers or in low oxygen microzones associated with 

suspended sediment particles. Our sequence data revealed the presence of known denitrifiers 30 

(Thiobacillus denitrificans) and nitrate reducers (e.g., species of Polaromonas), supporting this 

contention. 

Molecular analysis of SSU gene sequences.  Paired-end sequencing of the V4 region of 

the SSU gene generated 3,556,417 sequences from the SLW water column, 1,361,815 from the 

drill and borehole water, and 561,966 from the surficial sediment samples.  After quality filtering 35 

and removal of chimeric sequences, 2,686,526, 984,412, and 333,600, respectively, reads were 

used for phylogenetic analysis (Extended Data Table 2).  Calculation of sequence coverage 

(Extended Data Table 2) and collector curves (data not shown) indicated the depth of sequencing 

to be sufficient to describe the abundant members in the SLW water and sediment communities.   

Analysis of molecular variance (AMOVA) in data obtained from three casts of the WTS-40 

LV showed no statistical difference amongst the casts (pair wise p-values ≥ 0.69); therefore, all 

molecular data from the water column were compiled. Estimations of species diversity in the 

lake water revealed a community diversity comparable to many surface aquatic environments50.  

Of the 3,931 OTUs identified in the SLW water column, 3,105 (87% of the total sequence reads) 

and 30 (3.6% of the total sequence reads) classified within the Bacteria and Archaea, 45 

respectively, while 793 OTUs were not classified.  The bacterial and archael OTUs were 



Acc
ep

ted
 9 

Ju
ly 

20
14

Supplementary Information       2014-03-04222 

 

classified into 32 and 2 phyla, respectively (Fig. 3A). The majority of OTUs were taxonomically 

affiliated with the Proteobacteria (1,893 OTUs; 53% of all sequences) and Actinobacteria (401 

OTUs; 11% of all sequences).  

Within the proteobacterial OTUs from the water column, 84% of the sequences classified 50 

within the beta- and delta- classes. Phylotypes most closely related to species in the genera 

‘Candidatus Nitrotoga’, Polaromonas, and Sideroxydans were the 1st, 2nd,and 3rd, respectively,  

most abundant OTUs in the dataset.  Highly abundant actinobacterial phylotypes were most 

closely related to SSU gene sequences reported previously from polar lake environments (e.g., 

ref 52). Most of the archaeal phylotypes were classified as Thaumarchaeota, with one OTU from 55 

this group representing the 5th most abundant phylotype. Phylotypes that were abundant in the 

water column and surficial sediment (Fig. 3b) were very rare (OTU 1756, 0.003%; OTU 10327, 

0.007%; OTU 2522, 0.002%; and OTU 1767, 0.001%) or not observed (OTU 1901, OTU 5861, 

and OTU 1005) in data obtained from the drill water assemblage.   

Nearly all the SSU gene sequences characterized from the surficial sediment were 60 

bacterial (1,935 OTUs; 94%), with only 0.3% classifying within the Archaea. Proteobacteria 

were the most abundant phylum, with the beta- and gamma- classes representing 65% of the 

OTUs within this group.  Similar to observations for the SLW water column, phylotypes most 

closely related to species of Sideroxydans and ‘Candidatus Nitrotoga’ were the most abundant 

OTUs (1st and 2nd, respectively).  However, phylotypes that classified within the genera 65 

Thiobacillus, Nitrosospira, and Methylobacter were enriched in the sediments relative to the 

water column (<0.7% of all sequences in the water column).  Cluster analysis of the water 

column, sediment, and drilling water community structure indicated that the SLW water and 
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surficial sediments were not statistically different; however, the drilling water was statistically 

different from the water column and sediment environment (Figure 3a).  70 

Samples of the drilling water contained no OTUs that classified as archaeal, and only 41 

OTUs (<1%) were unclassifiable at the domain level.  The Proteobacteria and the Firmicutes 

were the most abundant phyla in the dataset, representing 70% and 20% of the sequences, 

respectively.  The most abundant phylotypes were most closely related to species of 

Janthinobacterium and Tumebacillus, with each representing ~19% of the dataset. Many of the 75 

other abundant OTUs in the drilling water were closely related to sequences and isolates 

observed previously in icy environments, including Antarctic ice cores53.
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