48 research outputs found

    Self-Consistent Assignment of Asparagine and Glutamine Amide Rotamers in Protein Crystal Structures

    Get PDF
    SummaryThe current protein structure database contains unfavorable Asn/Gln amide rotamers in the order of 20%. Here, we derive a set of self-consistent potential functions to identify and correct unfavorable rotamers. Potentials of mean force for all heavy atoms are compiled from a database of high-resolution protein crystal structures. Starting from erroneous data, a refinement-correction cycle quickly converges to a self-consistent set of potentials. The refinement is entirely driven by the deposited structure data and does not involve any assumptions on molecular interactions or any artificial constraints. The refined potentials obtained in this way identify unfavorable rotamers with high confidence. Since the state of Asn/Gln rotamers is largely determined by hydrogen bond interactions, the features of the respective potentials are of interest in terms of molecular interactions, protein structure refinement, and prediction. The Asn/Gln rotamer assignment is available as a public web service intended to support protein structure refinement and modeling

    Detection of unrealistic molecular environments in protein structures based on expected electron densities

    Get PDF
    Understanding the relationship between protein structure and biological function is a central theme in structural biology. Advances are severely hampered by errors in experimentally determined protein structures. Detection and correction of such errors is therefore of utmost importance. Electron densities in molecular structures obey certain rules which depend on the molecular environment. Here we present and discuss a new approach that relates electron densities computed from a structural model to densities expected from prior observations on identical or closely related molecular environments. Strong deviations of computed from expected densities reveal unrealistic molecular structures. Most importantly, structure analysis and error detection are independent of experimental data and hence may be applied to any structural model. The comparison to state-of-the-art methods reveals that our approach is able to identify errors that formerly remained undetected. The new technique, called RefDens, is accessible as a public web service at http://refdens.services.came.sbg.ac.at

    CARD8 and NLRP1 Undergo Autoproteolytic Processing through a ZU5-Like Domain

    Get PDF
    The “Function to Find Domain” (FIIND)-containing proteins CARD8 (Cardinal; Tucan) and NLRP1 (NALP1; NAC) are well known components of inflammasomes, multiprotein complexes responsible for activation of caspase-1, a regulator of inflammation and innate immunity. Although identified many years ago, the role of the FIIND is unknown. Here, we report that CARD8 and NLRP1 undergo autoproteolytic cleavage at a conserved SF/S motif within the FIIND. Using bioinformatics and computational modeling approaches, we detected striking structural similarity between the FIIND and the ZU5-UPA domain present in the autoproteolytic protein PIDD. This allowed us to generate a three-dimensional model and to gain insights in the molecular mechanism of the cleavage. Site-directed mutagenesis experiments revealed that the second serine of the SF/S motif is required for CARD8 and NLRP1 autoproteolysis. Furthermore, we discovered an important function for conserved glutamic acid and histidine residues, located in proximity of the cleavage site in regulating the autoprocessing efficiency. Altogether, these results identify a function for the FIIND and show that CARD8 and NLRP1 are ZU5-UPA domain-containing autoproteolytic proteins, thus suggesting a novel mechanism for regulating innate immune responses

    Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription

    Get PDF
    In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding

    HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes

    Get PDF
    SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 \ub5M, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency

    SNP Prioritization Using a B ayesian Probability of Association

    Full text link
    Prioritization is the process whereby a set of possible candidate genes or SNP s is ranked so that the most promising can be taken forward into further studies. In a genome‐wide association study, prioritization is usually based on the P ‐values alone, but researchers sometimes take account of external annotation information about the SNP s such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate B ayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome‐wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers’ subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P ‐value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta‐analysis of kidney function genome‐wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P ‐values alone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96317/1/gepi21704.pd

    Importance of Different Types of Prior Knowledge in Selecting Genome‐Wide Findings for Follow‐Up

    Full text link
    Biological plausibility and other prior information could help select genome‐wide association ( GWA ) findings for further follow‐up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts’ opinions and empirical evidence to estimate the relative importance of 15 types of information at the single‐nucleotide polymorphism ( SNP ) and gene levels. Opinions were elicited from 10 experts using a two‐round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNP s established as being associated with seven disease traits through GWA meta‐analysis and independent replication, with the corresponding frequency in a randomly selected set of SNP s. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta‐analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96262/1/gepi21705.pd

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets
    corecore