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Abstract

Background: During the last decade, a great number of extremely valuable large-scale genomics and proteomics
datasets have become available to the research community. In addition, dropping costs for conducting high-throughput
sequencing experiments and the option to outsource them considerably contribute to an increasing number
of researchers becoming active in this field. Even though various computational approaches have been developed to
analyze these data, it is still a laborious task involving prudent integration of many heterogeneous and frequently
updated data sources, creating a barrier for interested scientists to accomplish their own analysis.

Results: We have implemented Dintor, a data integration framework that provides a set of over 30 tools to assist
researchers in the exploration of genomics and proteomics datasets. Each of the tools solves a particular task and
several tools can be combined into data processing pipelines. Dintor covers a wide range of frequently required
functionalities, from gene identifier conversions and orthology mappings to functional annotation of proteins and
genetic variants up to candidate gene prioritization and Gene Ontology-based gene set enrichment analysis.
Since the tools operate on constantly changing datasets, we provide a mechanism to unambiguously link tools
with different versions of archived datasets, which guarantees reproducible results for future tool invocations. We
demonstrate a selection of Dintor’s capabilities by analyzing datasets from four representative publications. The
open source software can be downloaded and installed on a local Unix machine. For reasons of data privacy it
can be configured to retrieve local data only. In addition, the Dintor tools are available on our public Galaxy web
service at http://dintor.eurac.edu.

Conclusions: Dintor is a computational annotation framework for the analysis of genomic and proteomic datasets,
providing a rich set of tools that cover the most frequently encountered tasks. A major advantage is its capability to
consistently handle multiple versions of tool-associated datasets, supporting the researcher in delivering reproducible
results.

Keywords: Reproducible research, Data integration, Data versioning, Gene prioritization, Gene set enrichment, Protein
functional similarity, Genomics and proteomics pipeline, Galaxy web server

Background
Analysis of high-throughput genomic and proteomic
datasets requires familiarity with the use of specialized
tools and web servers, and heterogeneous, complex
data from various databases. This is often a barrier for
interested researchers [1]. Furthermore, external data-
bases and web servers are undergoing constant update

cycles, leaving the analyst with the burden to archive
and version data for reproducibility of results [2, 3].
Numerous solutions have been developed to assist re-
searchers in data exploration, mostly published as web
services, with notable efforts to generate workflow
management systems that are able to integrate com-
mand line tools or other web server’s data [4–9], as part
of a programming environment [10], or as stand-alone
programs [11–13]. In many of these efforts emphasis is
put on solving a specific problem, such as gene set analysis
[14, 15] or disease gene prioritization [16], with less im-
portance put on documentation and management of
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underlying data. Web-based solutions in particular usually
do not provide any means for archiving the source data
that were used in the computations, with the result that
analyses cannot be reproduced once the web server is up-
dated. Conversely, some approaches are dedicated to pru-
dent data handling by employing data warehousing
methodologies (briefly reviewed in [17]), but by definition
offer little means for data analysis.
Consistent use of software alongside well-defined ver-

sions of underlying data is highly appreciated in long-
standing collaborations or when addressing questions
raised during the review process of a submitted manu-
script. Therefore, our goal was to develop a tool suite
that facilitates exploration and analysis of large-scale
genomic and proteomic datasets and that provides
means to easily identify and exchange the underlying
datasets used by the analysis tools. The resulting Dintor
framework consists of more than 30 tools, based on well
accepted, published, and popular methods that provide
rich functionality for handling single nucleotide poly-
morphism (SNP) data; gene, protein, and transcript
identifier conversions; functional annotation of SNPs
and genes; gene prioritization and gene set enrichment
analysis; as well as biomedical annotation. The frame-
work distinguishes itself from similar approaches by
employing versioned data files as tool data sources,
which assures reproducible results for tool invocations
at any time in the future. This is especially important
when working on long-term projects, where results from
data analysis are used as feedback to experimental de-
signs, which then produce the next generation of data to
analyze. The tools can be executed on our Galaxy [5]
web server, http://dintor.eurac.edu, and for reasons of
performance, privacy or data security they can be in-
stalled and run locally on Unix-like environments, with
the additional option to set up a local mirror of the Gal-
axy sever (see Fig. 1). The Dintor framework is an open,
extensible, and easy to use solution for reproducible
functional analysis of genomics and proteomics data.

Implementation
The tool suite has been designed as an open and modu-
lar framework with equal importance given to both func-
tionality and dataset versioning. The tools are intended
to be invoked in pipelines and therefore were planned as
independent and reusable units that fulfill a special pur-
pose in order to achieve a certain, more complex goal.
Tools are given a high degree of flexibility for accessing
data by allowing users to define specific versions of their
underlying data resources. This is implemented with a
global, version-aware, and extensible configuration dir-
ectory. Each Dintor release comes with its own configur-
ation directory that explicitly links data files and
databases with tools. Versioning is guaranteed by storing

data files and databases with time stamps. Each time a
tool requests access to data, it is pointed to the appro-
priate data source through the configuration directory.
We have chosen Ensembl as the principal source of data
for our framework, since their Biomart data warehouse
[18, 19] provides a comprehensive and regularly updated
resource for genomic data.
The modules have been implemented in the program-

ming languages Python and Perl, the latter is required by
the Ensembl application programming interface (Fig. 1).
Dintor tools process input as tabular text files and gen-
erally append resulting columns to each row without
altering the content of the input rows. Thus, information
can be passed on seamlessly between tools in a pipeline-
like manner. Each tool is accessible via a consistent
command line interface, which is wrapped by a Galaxy
server. Therefore, the framework addresses both graph-
ical interface-oriented users through the web server and
bioinformaticians through the command line tools. In
both cases, pipelines are built with either the graphical
interface of the Galaxy tools or by utilizing a Unix shell
script harnessing the command line tools.
One of the added values of the framework is that each

tool is tied to a set of predefined and well-documented
data files. Therefore, the origin and date of the different
data sources are always defined when running a tool.

Fig. 1 Hierarchical setup of the Dintor framework. On the top level,
a Galaxy web server provides access via a graphical user interface to
all available tools. The web interface is built on a collection of Unix
shell command line tools, which come with detailed help pages.
These tools can further be separated into two large subgroups: one
is dedicated to querying the Ensembl database and employs Perl as
a programming language. The other subgroup contains the remaining
modules, which are implemented in Python. All modules are
characterized by accessing either external or internal relational
databases such as Ensembl or the Gene Ontology database, or
operate on locally stored text files provided with the distribution.
For privacy or performance reasons it is possible to configure
Dintor such that it accesses only local data. The associations
of these animal drawings with the respective programming
languages are the protected trademarks of O’Reilly Media, Inc.
Used with permission
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We have stored updates for the data sources of the differ-
ent tools since their implementation up to the last GRCh37
release of the Ensembl genome browser (Ensembl 75). Our
earliest datasets range back to Ensembl 65 so that users
can reproduce previous results. For example, Human Gen-
ome Organisation Gene Nomenclature Committee
(HGNC) gene symbols, which frequently change names,
can easily be queried with their identifiers used at any point
of time during the last three years. The Dintor release cycle
is following the update cycle of the Ensembl database, pro-
viding a self-contained set of tools and data. To gain max-
imum flexibility, any tool can ultimately be furnished with
user-defined data files.
We assure high standards of code stability and quality

by running more than 800 unit tests on a nightly basis.
Each of the 30 tools comes with a concise description
on the command line level and with extensive docu-
mentation in the Galaxy framework, including example
invocations and a tutorial explaining selected tools and
workflows. An overview of all Dintor tools is given in
Additional file 1.
The data integration framework is split logically into

the following groups: (1) basic functionality, for dealing
with gene location and gene identifier conversions; (2)
annotation retrieval, where information relevant to given
variants and genes is retrieved from established function-
related databases; and (3) computational methods, which
are used to investigate relationships between genes, gene
products, and within gene sets.

Basic functionality
Variation data represent the core of many genomic ana-
lyses. Therefore, we offer a set of tools that provide an
interface to dbSNP [20] and SNP-related data. Information
such as the location on the chromosome, alleles, Ensembl
validation state, and conservation scores are readily at the
hands of the researcher. For pairs of SNPs it is possible to
compute linkage disequilibrium (LD) expressed either as
D’ or r2 scores [21]. If the variation locates within a gene
then variation consequences and deleteriousness measures
[22–24] are accessible on a transcript basis. Locations may
also be queried for overlaps with Ensembl regulatory
regions [25].
Genes are frequently reported in different identifier

systems, which hinders establishing connections between
heterogeneous datasets. We supply conversion tools be-
tween the most widely used identifiers in human and the
model system fruit fly. In addition, translation proce-
dures are available to map between genes, transcripts
and UniProt identifiers, and pairwise orthology [26] can
be inferred between human and the model organisms
fruit fly, mouse, and C. elegans. The conversion schemes
have been implemented generically to facilitate extension
to any desired organism.

We have developed a means to establish a link between
SNP data (in the form of genomic coordinates) and genes
through LD-based haplotype blocks [27]. This is especially
useful when analyzing tag SNPs reported in human
genome-wide association (GWA) studies, which are con-
sidered as a marker for the genes contained in their re-
spective LD block. In addition, genes can be queried for
known transcripts and their intron/exon composition.

Annotation retrieval
Modules in this tool group allow users to annotate genes
and proteins with high-level information concerning their
functional role in an organism. We report protein-protein
interactions or protein complexes based on the iRefIndex
database [28], pathway information is made accessible
through the Reactome database [29, 30]. In addition, Gene
Ontology (GO) [31] annotations are accessed by either
querying the official GO database or a local database in-
stance. Finally, tissue specific gene expression data is
imported from the GeneAtlas database [32].
One of the ultimate goals of human genomics and

proteomics research is to identify relationships between
genetic variation and phenotypes. Both ClinVar [33] and
the Human Gene Mutation Database (HGMD) [34] pro-
vide annotations for human genetic variation and their
role in health and disease. These resources are accessible
with Dintor. A license is required to access HGMD, and
license holders may use the command line version in
combination with a local database installation. Drugs
and their targets have also been integrated into the
Dintor suite by providing access to DrugBank [35]. In
addition, pharmacogenomics annotations are available
from PharmaADME (http://pharmaadme.org).

Computational methods
The tools described so far retrieve information from avail-
able databases to establish links with data of interest. We
have implemented a set of tools that goes beyond data
integration, where functional and semantic similarity be-
tween pairs of proteins is calculated by applying selected
approaches [36]. Furthermore, the Dintor framework pro-
vides a means for elementary gene set enrichment analysis
[37] based on GO terms. In addition, we have created a
gene prioritization module that combines different types
of evidence based on GO term annotations, protein-
protein interactions and co-complexes, Reactome pathway
models, and protein functional similarity through a rank-
based approach similar to that implemented in the
MetaRanker method [38].

Results and discussion
In the following four sections we present use-cases dem-
onstrating the capabilities of the Dintor framework to
build pipelines and to take advantage of versioned

Weichenberger et al. BMC Genomics  (2015) 16:1081 Page 3 of 9

http://pharmaadme.org/


datasets. The use-cases were chosen from recent, repre-
sentative publications to cover a wide range of Dintor’s
functionality. In the first example we illustrate the steps
to convert signals from human GWA studies to testable
candidate genes from model organisms. We present a
simple pipeline that takes dbSNP entries associated with
Parkinson’s disease and walk through the steps to find
fly orthologs for the genes contained in the respective
LD-based haplotype blocks. In the second example, we
investigate Dintor’s annotation possibilities by analyzing
a small dataset consisting of non-synonymous point mu-
tations associated with autism spectrum disorders [39].
Next, we explore the possibility to use versioned data by
repeating a gene set enrichment analysis employing data
from 2012. Finally, we compare our gene prioritization
tool with commonly used tools based on a benchmark
dataset from 2010 [40]. Unix shell script pipelines, input
files and result files are included as Additional file 2 for
the first three examples.

Parkinson’s disease GWAS example
Parkinson’s disease (PD) is a neurodegenerative disorder
caused by the death of dopamine generating cells in the
brain’s substantia nigra, resulting in tremor, bradykine-
sia, and rigidity. Genes associated with PD can be tested
in fruit flies by studying movement in fly lines with si-
lenced orthologous candidate genes. Recently, Nalls et
al. [41] published a highly powered GWA study, which
lists 26 loci with their respective tag SNPs significantly
associated with PD. In this example, we demonstrate the
capabilities of the Dintor framework by outlining the
steps to obtain orthologous candidate genes in fruit fly
for the genes located at these 26 human loci. This pipe-
line is also available as a tutorial on our Galaxy web
service (http://dintor.eurac.edu).
In a first step we take the dbSNP entries from Table 1

of the abovementioned publication and convert these
dbSNP identifiers to coordinates on the human genome
(version GRCh37). With these coordinates we look up
the closest LD-based haplotype block [27] and find that
all SNP locations are contained within LD blocks. In the
next step we select the genes located within those LD
blocks, as these genes might include PD causal variants.
The HGNC symbols of those genes are obtained based
on their Ensembl identifiers, which are mapped to fly
orthologs using Ensembl Compara orthology tables [26].
Two additional conversions based on the orthologs’
FlyBase gene identifiers provide us with the fly annota-
tion symbols (CG numbers) and the respective Vienna
Drosophila Resource Center (VDRC) transformant iden-
tifiers, which can readily be used to order fly lines for
RNAi knock-down experiments.
In this small example, we started with a table consist-

ing of 26 dbSNP entries, corresponding to the 26 loci

identified by the GWA study. Each step was carried out
with a distinct tool and added specific information to
the original input table (Fig. 2). For cases where multiple
hits were reported for a single entity (for example sev-
eral genes in an LD block, or multiple fly orthologs for a
single human gene), each hit was reported in a separate
line. To summarize, for the 26 loci/LD blocks we found

Fig. 2 Parkinson’s disease GWA annotation pipeline. Shown here is
the workflow for processing the PD GWA input table containing
dbSNP identifiers. Gray boxes indicate tabular text files. Boxes with
rounded corners and blue background designate file-processing
tools accepting as input a table and extending it with additional
information by appending new data columns. These tool boxes are
labeled with their respective Dintor tool names. Arrows indicate the
workflow direction by connecting input and output data files, with
the processing tool placed next to the arrow. The pipeline starts with
converting dbSNP identifiers from the original table to coordinates
referring to the GRCh37 genome, and ends with a double invocation
of Dintor’s fly gene identifier converter, DMGeneIdConverter, in order
to retrieve fly annotation symbols (CG IDs) and VDRC transformant
identifiers (Trf IDs)
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79 human Ensembl gene IDs related to 44 fly orthologs,
which can be targeted by 106 VDRC fly lines.

Variant annotation
Many of the Dintor tools are useful for variant annotation
as demonstrated in the following example, where we
retrieve relevant information for a small set of selected
variants. The example is based on a publication reporting
the exome sequencing of family trios with idiopathic
forms of autism spectrum disorders (ASDs) [39], a mental
health disorder characterized by deficits in social commu-
nication and interaction, which usually is diagnosed dur-
ing the first two years of childhood. The study aimed to
identify de novo private, protein-altering, spontaneous
mutations in persons suffering from ASD by sequencing
the exomes of the affected individuals and their par-
ents. This study is a representative example where indi-
vidual level data is used to query various annotation
databases, which in many countries is strictly regulated
by privacy law. Therefore, utilizing Dintor tools in com-
bination with local database installations provides a
means to comply with such legal regulations, as no data
are sent to public servers.
In the example pipeline (see Fig. 3) we focus on anno-

tating three disruptive de novo point mutations that were
found to be potentially causative for sporadic ASD in
three different genes, as listed in Table 2 of the publication
[39]: LAMC3 (encodes for laminin gamma 3 chain),
SCN1A (encodes for a voltage gated Na+ channel protein),
and GRIN2B (encodes for an ionotropic glutamate recep-
tor). As many publications from around the year 2011,
this ASD study still reports genomic locations based on
the NCBI36 genome version. We therefore start with lift-
ing the coordinates to Dintor’s current reference genome,
GRCh37. In a following step we retrieve the GERP conser-
vation scores [42] for 37 eutherian mammals from the
Ensembl database. For all three mutations we observe
conservation scores close to 5.0, an indication that the
positions are under evolutionary constraint. We continue
the annotation process by investigating the effects of the
three mutations with a Dintor tool that reports multiple
types of transcript-related information, such as Ensembl
transcript identifier, consequence type, codon change,
SIFT [22] and PolyPhen2 [23] scores. In all transcripts,
the mutations are characterized as highly deleterious by
SIFT and PolyPhen2. The mutation in gene GRIN2B
occurs at a splice site, whereas the other two are missense
mutations in exons 5 and 26 of LAMC3 and SCN1A,
respectively. There is a single transcript of LAMC3, and
the respective mutation results in a change of a negatively
charged aspartic acid to a glycine with neutral charge. In
each of the four protein-coding transcripts of SCN1A the
respective variation results in a substitution of a proline
residue to leucine.

Fig. 3 Variant annotation pipeline. This figure illustrates the pipeline
for processing three genetic variations identified by exome
sequencing as potential causative de novo point mutations in
sporadic autism spectrum disorders. The symbols used in this figure
are the same as in Fig. 2. The analysis starts by lifting the genomic
coordinates of the three point mutations from the originally
provided NCBI36 coordinates to GRCh37. Conservation and variation
consequence information is added before the affected genes are
identified. Ultimately, pharmacological information is retrieved for
the three proteins affected by each of the point mutations
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Querying the current ClinVar [33] database with the
respective Dintor tool reveals that the splice site muta-
tion in GRIN2B is associated with mental retardation.
Looking at this annotation historically, it turns out that
the ClinVar entry originates from a later publication on
ASD by the same group [43].
We ultimately want to find out if the proteins encoded

by these three genes appear in a pharmacological context.
This can readily be answered by searching the correspond-
ing UniProt accession numbers in the Drugbank [35]
database utilizing the respective Dintor tool. No drugs are
found to act on LAMC3, but the voltage gated Na+ channel
protein SCN1A is inhibited mainly by anticonvulsant drugs
to treat epilepsy. Protein GRIN2B is targeted mainly by
antagonistic drugs, including anticonvulsants for treatment
of epilepsy, but also as severe pain reliever or in treatment
of schizophrenia and other psychoses. A literature research
shows that anticonvulsants prescribed for epilepsy treat-
ment such as topiramate (which acts on SCN1A) have also
been investigated as medications for ASDs, however with
only small success [44].

Gene set enrichment analysis
Gene ontology-based gene set enrichment (GSE) is a
method to detect over- or underrepresentation of GO
terms in a defined set of input genes. We have imple-
mented a simple GSE method applying a hypergeometric
statistical model and Fisher’s exact test to detect GO term
enrichment, depletion, or both [45]. With this GSE tool,
we investigate to which degree of detail we can reproduce
a typical enrichment study published in 2012 [46], in
which a set of 71 genes was identified to be significantly
differentially expressed upon treatment of acute lympho-
blastic leukemia (ALL) cell lines with dexamethasone, a
synthetic glucocorticoid used during ALL treatment.
We take the HGNC gene symbols from Table 1 in [46]

and convert them to Ensembl gene identifiers using the
gene identifier conversion tool based on data retrieved
from Ensembl release 65, corresponding to the earliest
release of our Dintor framework in April 2012. This al-
lows us to rescue three gene symbols (listed as C18orf1,
C6orf81, and C7orf40 in the publication, now assigned
to gene symbols LDLRAD4, ARMC12, SNHG15), losing
C1orf107, which has been renamed to gene symbol DIEXF
before Ensembl release 65. A second lost gene is traced
back to a misspelling in the article (DPED1). Six additional
gene symbols cannot be mapped. These correspond to re-
tired Ensembl gene models (2), non-protein coding genes
(3), and one uncharacterized gene. The resulting 63 gene
identifiers are then mapped to UniProt accession num-
bers, which form the input for the GSE tool.
Enrichment is performed with a microarray-specific set

of background genes, retrieved from the series matrix

of the original article, deposited with Gene Expression
Omnibus identifier GSE29003. In order to replicate the
results we search for enriched GO terms in the bio-
logical process ontology, reporting Benjamini-Hochberg
[47] corrected p-values at a false discovery rate of 5 %,
they are listed in Table 1.
The results indicate that the enrichment tool clearly

identifies the apoptosis process as discussed in the ori-
ginal work. Running the analysis with recent GO data
(July 2014) yields a larger number of overrepresented
GO terms compared to performing the analysis with
data from early 2012. In both cases however, the ana-
lysis identifies highly significantly enriched GO terms
equal to those ranked high in the original work. Our

Table 1 Results from acute lymphoblastic leukemia gene set
enrichment analysis based on GO biological process ontology

GO terma p-valuec GO term name

GO:0042981b 2.01 × 10−5 Regulation of apoptotic process

GO:0006915b 6.29 × 10−5 Apoptotic process

GO:0010942 1.95 × 10−4 Positive regulation of cell death

GO:0008219b 3.57 × 10−4 Cell death

GO:0043065 5.23 × 10−4 Positive regulation of apoptotic process

GO:0043402 2.49 × 10−3 Glucocorticoid mediated signaling pathway

GO:1902532 4.78 × 10−3 Negative regulation of intracellular signal
transduction

GO:0010033 1.42 × 10−2 Response to organic substance

GO:2000271 2.61 × 10−2 Positive regulation of fibroblast apoptotic
process

GO:0007517 2.82 × 10−2 Muscle organ development

GO:0090073b 2.82 × 10−2 Positive regulation of protein
homodimerization activity

GO:0009968 3.13 × 10−2 Negative regulation of signal transduction

GO:0007519 3.29 × 10−2 Skeletal muscle tissue development

GO:0014902 3.33 × 10−2 Myotube differentiation

GO:0009966 4.24 × 10−2 Regulation of signal transduction

GO:0043523 4.24 × 10−2 Regulation of neuron apoptotic process

GO:0045663 4.24 × 10−2 Positive regulation of myoblast differentiation

GO:0048011 4.24 × 10−2 Neurotrophin TRK receptor signaling pathway

GO:0048741 4.24 × 10−2 Skeletal muscle fiber development

GO:0002260 4.50 × 10−2 Lymphocyte homeostasis

GO:0046426 4.50 × 10−2 Negative regulation of JAK-STAT cascade

GO:1901216 4.50 × 10−2 Positive regulation of neuron death

GO:0021542 4.83 × 10−2 Dentate gyrus development

GO:0014070 4.88 × 10−2 Response to organic cyclic compound
aGO terms emphasized in bold letters refer to terms that have been listed in
Table 2 of [46]
bEnriched terms found by our GSE tool when carrying out the analysis with
GO data from January 2012 (date of publication)
cListed p-values are Benjamini-Hochberg adjusted and restricted to values
lower than 0.05
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results are also in agreement with enrichment analysis
output obtained from the current Gene Ontology web
site, http://amigo.geneontology.org/rte (data not shown).

Gene prioritization
The goal of gene prioritization is to identify the most
relevant genes for a particular phenotype or a disease of
interest, from a large set of input candidates, for ex-
ample, resulting from a high-throughput genomics ex-
periment. A multitude of computational prioritization
methods have been developed in recent years using dif-
ferent data types and integration methods; eight popular
tools have been evaluated by Börnigen et al. in 2010
[40]. To establish a common benchmark dataset, the au-
thors first reviewed the literature for previously unknown
disease-gene associations and defined a validation dataset
with 42 disease genes. For each of the test cases, they
identified genes already associated with the respective
disease (training genes), collected disease-related key-
words from databases such as OMIM [48], and gath-
ered input candidates by taking all genes from a
10Mbp region around each disease gene in the valid-
ation set. Then they queried each prioritization tool
and computed different rank-based performance mea-
sures Table 9 in [40]).
In order to correctly assess the performance of the

Dintor prioritization tool, it is crucial to use the same
data that were available in May 2010, when Börnigen et
al. performed their literature review. If newer data were
used instead, we might benefit from a ”knowledge con-
tamination” [49], where the publication that reported
the disease association has later been incorporated into
databases such as GO or Reactome, which are then used
in the prioritization. This would result in overly optimistic
results and does not reproduce a real application scenario.
Dintor’s prioritization tool can be instructed to use dif-

ferent types of evidence; we used the default setting that
incorporates protein-protein interactions and co-complex
associations (obtained from iRefIndex v7.0), functional
annotations and functional similarity (using GO release
2010.05), and biochemical reactions and pathways (Reac-
tome release 32) into an overall ranking.
The newer Ensembl release 75 was used for creating the

training and candidate gene sets by mapping the gene
symbols provided in Supplementary Table 3 of Börnigen
et al. [40], and for retrieving the candidate genes from the
10Mbp genomic regions around the disease genes, pro-
vided in the same table. Spurious mappings were manually
resolved.
We assessed our tool by computing the same perform-

ance measures used by Börnigen et al., in particular, re-
sponse rate, median of all rank ratios, and in how many
of the 42 test cases the disease gene was reported in the
top 5 % (true positive rate (TPR) in top 5 %), top 10 %,

and top 30 % of all ranked candidates (see Table 2). The
choice of the right measure to judge the performance of
a method depends on the particular task. Given that lim-
ited resources commonly restrict the number of candi-
dates that can be subjected to further experimental
validation, we argue that the measures that indicate top
positions (TPR in top 5 % and 10 %) are of more prac-
tical relevance than those indicating the overall distribu-
tion (TPR in top 30 % and median). Dintor achieves
good results when evaluated using measures of the
former category, in TPR in top 5 % only ToppGene [16]
achieves a better performance. Dintor relies to a consid-
erable extent on GO annotations for prioritization, and
the sparse annotations in the older 2010 annotation data
might explain the poor median performance. It would
be of great interest to further investigate the relative
strengths and weaknesses of the different prioritization
tools based on an updated benchmark test set.
This example shows that Dintor’s gene prioritization

tool achieves a performance comparable to state-of-the-
art prioritization suites when the goal is to select top
ranking candidates, and it also demonstrates the capacity
to perform analyses using datasets from a user specified
point in time.
A simple gene prioritization example is provided

in the tutorial section of our Galaxy web service
(http://dintor.eurac.edu).

Conclusions
We describe Dintor, a data integration framework for the
analysis of genomics and proteomics data. Dintor provides

Table 2 Performance of Dintor gene prioritization tool
compared to results reported in [40]

Tool namea Response
rate

TPR in
top 5 %

TPR in
top 10 %

TPR in
top 30 %

Median

Candid [51] 100 % 21.4 % 33.3 % 64.3 % 18.11

Dintor 100 % 31.0 % 42.9 % 59.5 % 23.62

Endeavour-CS [52] 100 % 26.2 % 42.9 % 90.5 % 11.16

Endeavour-GW [52] 100 % 28.6 % 38.1 % 71.4 % 15.49

GeneDistiller [53] 97.6 % 26.2 % 47.6 % 78.6 % 11.11

GeneWanderer-DK
[54]

88.1 % 11.9 % 21.4 % 52.4 % 22.97

GeneWanderer-RW
[54]

95.2 % 16.7 % 26.2 % 61.9 % 22.11

Pinta-CS [55] 100 % 28.6 % 31.0 % 71.4 % 18.87

Pinta-GW [55] 100 % 26.2 % 31.0 % 71.4 % 19.03

ToppGene [16] 97.6 % 35.7 % 42.9 % 52.4 % 16.80

Tools that were reported to have a response rate lower than 80 % were
not included. The following abbreviations are used: CS candidate set,
GW genome-wide, TPR true positive rate
aTool names were taken from [40], references associated with tools are
provided in square brackets next to their names. The table is sorted
alphabetically by tool name
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multiple tools for characterizing and annotating genes and
their products, as well as methods for investigating gene/
protein relationships and candidate prioritization. The
underlying datasets used in the analysis can be exchanged
by design, allowing more control by the user and better
reproducibility of results. Multiple interfaces are provided
to fulfill the needs of users with different demands in
terms of usability, functionality, and control. Dintor is
available as a public web service but can also be installed
locally for improved performance and data security under
an open-source license.
Dintor will be updated regularly and developed further.

In particular, we intend to include additional databases
covering pathways and molecular interactions, and we
plan to include additional ontologies, like the Mammalian
Phenotype Ontology [50]. We also intend to further de-
velop methods for investigating relationships between
candidate genes/proteins. Finally, we encourage future
collaborative software development based on the open
source licensing model.

Availability and requirements
Project name: Dintor
Project home page: http://dintor.eurac.edu (free source
code and free web service)
Operating systems: Linux and Mac OS X
Programming languages: Python and Perl
Other requirements: Galaxy [5] and Apache, when run-
ning as a local web server
License: The software is published under the MIT

License
Any restrictions to use by non-academics: None
Ethics approval: No ethics approval was required for
this work.

Additional files

Additional file 1: Dintor tools summary. (PDF 567 kb)

Additional file 2: Data files for Dintor use-cases one to three.
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