47 research outputs found

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    Rapid coupling between ice volume and polar temperature over the past 150,000 years

    Get PDF
    Current global warming necessitates a detailed understanding of the relationships between climate and global ice volume. Highly resolved and continuous sea-level records are essential for quantifying ice-volume changes. However, an unbiased study of the timing of past ice-volume changes, relative to polar climate change, has so far been impossible because available sea-level records either were dated by using orbital tuning or ice-core timescales, or were discontinuous in time. Here we present an independent dating of a continuous, high-resolution sea-level record1,2 in millennial-scale detail throughout the past 150,000 years. We find that the timing of ice-volume fluctuations agrees well with that of variations in Antarctic climate and especially Greenland climate. Amplitudes of ice-volume fluctuations more closely match Antarctic (rather than Greenland) climate changes. Polar climate and ice-volume changes, and their rates of change, are found to covary within centennial response times. Finally, rates of sea-level rise reached at least 1.2 m per century during all major episodes of ice-volume reduction

    The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13

    Get PDF
    We describe here the New Zealand kauri (Agathis australis) Younger Dryas (YD) research project, which aims to undertake Δ14C analysis of ~140 decadal floating wood samples spanning the time interval ~13.1–11.7 kyr cal BP. We report 14C intercomparison measurements being undertaken by the carbon dating laboratories at University of Waikato (Wk), University of California at Irvine (UCI), and University of Oxford (OxA). The Wk, UCI, and OxA laboratories show very good agreement with an interlaboratory comparison of 12 successive decadal kauri samples (average offsets from consensus values of –7 to +4 14C yr). A University of Waikato/University of Heidelberg (HD) intercomparison involving measurement of the YD-age Swiss larch tree Ollon505, shows a HD/Wk offset of ~10–20 14C yr (HD younger), and strong evidence that the positioning of the Ollon505 series is incorrect, with a recommendation that the 14C analyses be removed from the IntCal calibration database

    Development of the IntCal database

    Get PDF
    The IntCal family of radiocarbon (14C) calibration curves is based on research spanning more than three decades. The IntCal group have collated the 14C and calendar age data (mostly derived from primary publications with other types of data and meta-data) and, since 2010, made them available for other sorts of analysis through an open-access database. This has ensured transparency in terms of the data used in the construction of the ratified calibration curves. As the IntCal database expands, work is underway to facilitate best practice for new data submissions, make more of the associated metadata available in a structured form, and help those wishing to process the data with programming languages such as R, Python, and MATLAB. The data and metadata are complex because of the range of different types of archives. A restructured interface, based on the “IntChron” open-access data model, includes tools which allow the data to be plotted and compared without the need for export. The intention is to include complementary information which can be used alongside the main 14C series to provide new insights into the global carbon cycle, as well as facilitating access to the data for other research applications. Overall, this work aims to streamline the generation of new calibration curves

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved (14)C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment (14)C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine (14)C and (10)Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1)

    Multi-decadal variations in Southern Hemisphere atmospheric ¹⁴C: Evidence against a Southern Ocean sink at the end of the Little Ice Age CO₂ anomaly.

    Get PDF
    Northern Hemisphere-wide cooling during the Little Ice Age (LIA; CE 1650-1775) is associated with a ~5 ppmv decrease in atmospheric carbon dioxide. Changes in terrestrial and ocean carbon reservoirs have been postulated as possible drivers of this relatively large shift in atmospheric CO₂, potentially providing insights into the mechanisms and sensitivity of the global carbon cycle. Here we report decadally-resolved radiocarbon (¹⁴C) levels in a network of tree rings series spanning CE 1700-1950 located along the northern boundary of, and within, the Southern Ocean. We observe regional dilutions in atmospheric radiocarbon (relative to the Northern Hemisphere) associated with upwelling of ¹⁴CO₂–depleted abyssal waters. We find the inter-hemispheric ¹⁴C offset approaches zero during increasing global atmospheric CO₂ at the end of the LIA, with reduced ventilation in the Southern Ocean and a Northern Hemisphere source of old carbon (most probably originating from deep Arctic peat layers). The coincidence of the atmospheric CO₂ increase and reduction in the inter-hemispheric ¹⁴C offset imply a common climate control. Possible mechanisms of synchronous change in the high latitudes of both hemispheres are discussed

    The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya)

    Get PDF
    The 1950s excavations by Charles McBurney in the Haua Fteah, a large karstic cave on the coast of northeast Libya, revealed a deep sequence of human occupation. Most subsequent research on North African prehistory refers to his discoveries and interpretations, but the chronology of its archaeological and geological sequences has been based on very early age determinations. This paper reports on the initial results of a comprehensive multi-method dating program undertaken as part of new work at the site, involving radiocarbon dating of charcoal, land snails and marine shell, cryptotephra investigations, optically stimulated luminescence (OSL) dating of sediments, and electron spin resonance (ESR) dating of tooth enamel. The dating samples were collected from the newly exposed and cleaned faces of the upper 7.5 m of the w14.0 m-deep McBurney trench, which contain six of the seven major cultural phases that he identified. Despite problems of sediment transport and reworking, using a Bayesian statistical model the new dating program establishes a robust framework for the five major lithostratigraphic units identified in the stratigraphic succession, and for the major cultural units. The age of two anatomically modern human mandibles found by McBurney in Layer XXXIII near the base of his Levalloiso-Mousterian phase can now be estimated to between 73 and 65 ka (thousands of years ago) at the 95.4% confidence level, within Marine Isotope Stage (MIS) 4. McBurney’s Layer XXV, associated with Upper Palaeolithic Dabban blade industries, has a clear stratigraphic relationship with Campanian Ignimbrite tephra. Microlithic Oranian technologies developed following the climax of the Last Glacial Maximum and the more microlithic Capsian in the Younger Dryas. Neolithic pottery and perhaps domestic livestock were used in the cave from the mid Holocene but there is no certain evidence for plant cultivation until the Graeco-Roman period

    A revised age of ad 667–699 for the latest major eruption at Rabaul

    Get PDF
    The most recent major eruption at Rabaul was one of the largest known events at this complex system, having a VEI rating of 6. The eruption generated widespread airfall pumice lapilli and ash deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the eruptive products yielded an age of about 1400 yrs BP, and the eruption became known as the "1400 BP" eruption. Previous analyses of the timing of the eruption have linked it to events in AD 536 and AD 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought tohave occurred in the interval AD 667-699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at AD 681 and AD 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval AD 681-684

    Punctuated shutdown of Atlantic Meridional Overturning circulation during Greenland Stadial 1

    Get PDF
    The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runof that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the ‘bipolar seesaw’). Here we exploit sub-fossil New Zealand kauri trees to report the frst securely dated, decadally-resolved atmospheric radiocarbon (¹⁴C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring ¹⁴C records with marine ¹⁴C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric ¹⁴C ofset was close to zero prior to GS-1, before reaching ‘near-modern’ values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our fndings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes

    Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

    Get PDF
    The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming
    corecore