11 research outputs found
Transition of patients with metabolic bone disease from paediatric to adult healthcare services: current situation and proposals for improvement
Metabolic bone disease; Paediatric; Transitional careEnfermedad ósea metabólica; Pediátrico; Atención de transiciónMalaltia ossi metabòlica; Pediàtric; Atenció transicionalBackground
There are currently no models for the transition of patients with metabolic bone diseases (MBDs) from paediatric to adult care. The aim of this project was to analyse information on the experience of physicians in the transition of these patients in Spain, and to draw up consensus recommendations with the specialists involved in their treatment and follow-up.
Methods
The project was carried out by a group of experts in MBDs and included a systematic review of the literature for the identification of critical points in the transition process. This was used to develop a questionnaire with a total of 48 questions that would determine the degree of consensus on: (a) the rationale for a transition programme and the optimal time for the patient to start the transition process; (b) transition models and plans; (c) the information that should be specified in the transition plan; and (d) the documentation to be created and the training required. Recommendations and a practical algorithm were developed using the findings. The project was endorsed by eight scientific societies.
Results
A total of 86 physicians from 53 Spanish hospitals participated. Consensus was reached on 45 of the 48 statements. There was no agreement that the age of 12 years was an appropriate and feasible point at which to initiate the transition in patients with MBD, nor that a gradual transition model could reasonably be implemented in their own hospital. According to the participants, the main barriers for successful transition in Spain today are lack of resources and lack of coordination between paediatric and adult units.
Conclusions
The TEAM Project gives an overview of the transition of paediatric MBD patients to adult care in Spain and provides practical recommendations for its implementation.This study was sponsored by KYOWA KIRIN FARMACÉUTICA, S.L
Poor phenotype-genotype association in a large series of patients with Type III Bartter syndrome
Excreció; Genètica humana; MutacióExcreción; Genética humana; MutaciónExcretion; Human genetics; MutationIntroduction
Type III Bartter syndrome (BS) is an autosomal recessive renal tubule disorder caused by loss-of-function mutations in the CLCNKB gene, which encodes the chloride channel protein ClC-Kb. In this study, we carried out a complete clinical and genetic characterization in a cohort of 30 patients, one of the largest series described. By comparing with other published populations, and considering that 80% of our patients presented the p.Ala204Thr Spanish founder mutation presumably associated with a common phenotype, we aimed to test the hypothesis that allelic differences could explain the wide phenotypic variability observed in patients with type III BS.
Methods
Clinical data were retrieved from the referral centers. The exon regions and flanking intronic sequences of the CLCNKB gene were screened for mutations by polymerase chain reaction (PCR) followed by direct Sanger sequencing. Presence of gross deletions or duplications in the region was checked for by MLPA and QMPSF analyses.
Results
Polyuria, polydipsia and dehydration were the main common symptoms. Metabolic alkalosis and hypokalemia of renal origin were detected in all patients at diagnosis. Calciuria levels were variable: hypercalciuria was detected in 31% of patients, while 23% had hypocalciuria. Nephrocalcinosis was diagnosed in 20% of the cohort. Two novel CLCNKB mutations were identified: a small homozygous deletion (c.753delG) in one patient and a small deletion (c.1026delC) in another. The latter was present in compound heterozygosis with the already previously described p.Glu442Gly mutation. No phenotypic association was obtained regarding the genotype.
Conclusion
A poor correlation was found between a specific type of mutation in the CLCNKB gene and type III BS phenotype. Importantly, two CLCNKB mutations not previously described were found in our cohortThis study was supported by two grants (PI09/90888 and PI11/01412) from the FIS of the Instituto de Salud Carlos III, Madrid, Spain, the Department of Health of the Basque Government (2014111064), and the Department of Education of the Basque Government (IT795-13)
Phenotypic characterization of X-linked hypophosphatemia in pediatric Spanish population
Deformitats òssies; Retard en el creixement; Hipofosfatèmia hereditàriaDeformidades óseas; Retraso en el crecimiento; Hipofosfatemia hereditariaBone deformities; Growth retardation; Inherited hypophosphatemiaBackground
X-linked hypophosphatemia (XLH) is a hereditary rare disease caused by loss-of-function mutations in PHEX gene leading tohypophosphatemia and high renal loss of phosphate. Rickets and growth retardation are the major manifestations of XLH in children, but there is a broad phenotypic variability. Few publications have reported large series of patients. Current data on the clinical spectrum of the disease, the correlation with the underlying gene mutations, and the long-term outcome of patients on conventional treatment are needed, particularly because of the recent availability of new specific medications to treat XLH.
Results
The RenalTube database was used to retrospectively analyze 48 Spanish patients (15 men) from 39 different families, ranging from 3 months to 8 years and 2 months of age at the time of diagnosis (median age of 2.0 years), and with XLH confirmed by genetic analysis. Bone deformities, radiological signs of active rickets and growth retardation were the most common findings at diagnosis. Mean (± SEM) height was − 1.89 ± 0.19 SDS and 55% (22/40) of patients had height SDS below—2. All cases had hypophosphatemia, serum phosphate being − 2.81 ± 0.11 SDS. Clinical manifestations and severity of the disease were similar in both genders. No genotype—phenotype correlation was found. Conventional treatment did not attenuate growth retardation after a median follow up of 7.42 years (IQR = 11.26; n = 26 patients) and failed to normalize serum concentrations of phosphate. Eleven patients had mild hyperparathyroidism and 8 patients nephrocalcinosis.
Conclusions
This study shows that growth retardation and rickets were the most prevalent clinical manifestations at diagnosis in a large series of Spanish pediatric patients with XLH confirmed by mutations in the PHEX gene. Traditional treatment with phosphate and vitamin D supplements did not improve height or corrected hypophosphatemia and was associated with a risk of hyperparathyroidism and nephrocalcinosis. The severity of the disease was similar in males and females.This research has been partially funded by Kyowa Kirin Farmacéutica S.L.U., project PI17/01745 from Instituto de Salud Carlos III, Acción Estratégica en Salud 2017-2020 and FEDER funds, Fondo de Investigaciones Sanitarias (FIS), Fundación Nutrición y Crecimiento (FUNDNYC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) and Fundación para la Investigación y la Innovación Biosanitaria del Principado de Asturias (FINBA)
Phenotypic characterization of X-linked hypophosphatemia in pediatric Spanish population
BACKGROUND: X-linked hypophosphatemia (XLH) is a hereditary rare disease caused by loss-of-function mutations in PHEX gene leading tohypophosphatemia and high renal loss of phosphate. Rickets and growth retardation are the major manifestations of XLH in children, but there is a broad phenotypic variability. Few publications have reported large series of patients. Current data on the clinical spectrum of the disease, the correlation with the underlying gene mutations, and the long-term outcome of patients on conventional treatment are needed, particularly because of the recent availability of new specific medications to treat XLH.
RESULTS: The RenalTube database was used to retrospectively analyze 48 Spanish patients (15 men) from 39 different families, ranging from 3months to 8years and 2months of age at the time of diagnosis (median age of 2.0years), and with XLH confirmed by genetic analysis. Bone deformities, radiological signs of active rickets and growth retardation were the most common findings at diagnosis. Mean (±SEM) height was - 1.89±0.19 SDS and 55% (22/40) of patients had height SDS below-2. All cases had hypophosphatemia, serum phosphate being - 2.81±0.11 SDS. Clinical manifestations and severity of the disease were similar in both genders. No genotype-phenotype correlation was found. Conventional treatment did not attenuate growth retardation after a median follow up of 7.42years (IQR=11.26; n=26 patients) and failed to normalize serum concentrations of phosphate. Eleven patients had mild hyperparathyroidism and 8 patients nephrocalcinosis.
CONCLUSIONS: This study shows that growth retardation and rickets were the most prevalent clinical manifestations at diagnosis in a large series of Spanish pediatric patients with XLH confirmed by mutations in the PHEX gene. Traditional treatment with phosphate and vitamin D supplements did not improve height or corrected hypophosphatemia and was associated with a risk of hyperparathyroidism and nephrocalcinosis. The severity of the disease was similar in males and females
Complement Activation and Thrombotic Microangiopathies.
BACKGROUND AND OBJECTIVES: Atypical hemolytic uremic syndrome is a form of thrombotic microangiopathy caused by dysregulation of the alternative complement pathway. There is evidence showing complement activation in other thrombotic microangiopathies. The aim of this study was to evaluate complement activation in different thrombotic microangiopathies and to monitor treatment response.
DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Complement activation was assessed by exposing endothelial cells to sera or activated-patient plasma-citrated plasma mixed with a control sera pool (1:1)-to analyze C5b-9 deposits by immunofluorescence. Patients with atypical hemolytic uremic syndrome (n=34) at different stages of the disease, HELLP syndrome (a pregnancy complication characterized by hemolysis, elevated liver enzymes, and low platelet count) or severe preeclampsia (n=10), and malignant hypertension (n=5) were included.
RESULTS: Acute phase atypical hemolytic uremic syndrome-activated plasma induced an increased C5b-9 deposition on endothelial cells. Standard and lower doses of eculizumab inhibited C5b-9 deposition in all patients with atypical hemolytic uremic syndrome, except in two who showed partial remission and clinical relapse. Significant fibrin formation was observed together with C5b-9 deposition. Results obtained using activated-plasma samples were more marked and reproducible than those obtained with sera. C5b-9 deposition was also increased with samples from patients with HELLP (all cases) and preeclampsia (90%) at disease onset. This increase was sustained in those with HELLP after 40 days, and levels normalized in patients with both HELLP and preeclampsia after 6-9 months. Complement activation in those with malignant hypertension was at control levels.
CONCLUSIONS: The proposed methodology identifies complement overactivation in patients with atypical hemolytic uremic syndrome at acute phase and in other diseases such as HELLP syndrome and preeclampsia. Moreover, it is sensitive enough to individually assess the efficiency of the C5 inhibition treatment
Complement Activation and Thrombotic Microangiopathies
BACKGROUND AND OBJECTIVES: Atypical hemolytic uremic syndrome is a form of thrombotic microangiopathy caused by dysregulation of the alternative complement pathway. There is evidence showing complement activation in other thrombotic microangiopathies. The aim of this study was to evaluate complement activation in different thrombotic microangiopathies and to monitor treatment response.
DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Complement activation was assessed by exposing endothelial cells to sera or activated-patient plasma-citrated plasma mixed with a control sera pool (1:1)-to analyze C5b-9 deposits by immunofluorescence. Patients with atypical hemolytic uremic syndrome (n=34) at different stages of the disease, HELLP syndrome (a pregnancy complication characterized by hemolysis, elevated liver enzymes, and low platelet count) or severe preeclampsia (n=10), and malignant hypertension (n=5) were included.
RESULTS: Acute phase atypical hemolytic uremic syndrome-activated plasma induced an increased C5b-9 deposition on endothelial cells. Standard and lower doses of eculizumab inhibited C5b-9 deposition in all patients with atypical hemolytic uremic syndrome, except in two who showed partial remission and clinical relapse. Significant fibrin formation was observed together with C5b-9 deposition. Results obtained using activated-plasma samples were more marked and reproducible than those obtained with sera. C5b-9 deposition was also increased with samples from patients with HELLP (all cases) and preeclampsia (90%) at disease onset. This increase was sustained in those with HELLP after 40 days, and levels normalized in patients with both HELLP and preeclampsia after 6-9 months. Complement activation in those with malignant hypertension was at control levels.
CONCLUSIONS: The proposed methodology identifies complement overactivation in patients with atypical hemolytic uremic syndrome at acute phase and in other diseases such as HELLP syndrome and preeclampsia. Moreover, it is sensitive enough to individually assess the efficiency of the C5 inhibition treatment
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old