86 research outputs found
The LHCb Timing and Fast Control system
In this paper we describe the LHCb Timing and Fast Control (TFC) system. It is different from that of the other LHC experiments in that it has to support two levels of high-rate triggers. Furthermore, emphasis has been put on partitioning and on locating the TFC mastership in one type of module: the Readout Supervisor. The Readout Supervisor handles all timing, trigger, and control command distribution. It generates auto-triggers as well as controls the trigger rates. Partitioning is handled by a programmable patch panel/switch introduced in the TTC distribution network between a pool of Readout Supervisors and the Front-End electronics. I
Control and synchronization of the krypton calorimeter pipeline digitizer in NA48 experiment at CERN
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
The NA48 LKr calorimeter readout electronics
The NA48 experiment at the CERN SPS accelerator is making a measurement of the direct CP violation parameter by comparing the four rates of decay of and into and . To reconstruct the decays into the information from the almost 13500 channels of a quasi-homogeneous liquid krypton electromagnetic calorimeter is used. The readout electronics of the calorimeter has been designed to provide a dynamic range from a few MeV to about 50 GeV energy deposition per cell, and to sustain a high rate of incident particles. The system is made by cold charge preamplifiers (working at 120 degrees K), low-noise fast shapers followed by digitizer electronics at 40 MHz sampling rate that employs a gain switching technique to expand the dynamic range, where the gain can be selected for each sample individually (i.e. every 25 ns). To reduce the amount of data collected the system contains a zero suppression circuit based on halo expansion
First observation of Bs -> D_{s2}^{*+} X mu nu decays
Using data collected with the LHCb detector in proton-proton collisions at a
centre-of-mass energy of 7 TeV, the semileptonic decays Bs -> Ds+ X mu nu and
Bs -> D0 K+ X mu nu are detected. Two structures are observed in the D0 K+ mass
spectrum at masses consistent with the known D^+_{s1}(2536) and
$D^{*+}_{s2}(2573) mesons. The measured branching fractions relative to the
total Bs semileptonic rate are B(Bs -> D_{s2}^{*+} X mu nu)/B(Bs -> X mu nu)=
(3.3\pm 1.0\pm 0.4)%, and B(Bs -> D_{s1}^+ X munu)/B(Bs -> X mu nu)= (5.4\pm
1.2\pm 0.5)%, where the first uncertainty is statistical and the second is
systematic. This is the first observation of the D_{s2}^{*+} state in Bs
decays; we also measure its mass and width.Comment: 8 pages 2 figures. Published in Physics Letters
Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons
To study fundamental questions of hadron and nuclear physics in interactions
of antiprotons with nucleons and nuclei, the universal PANDA detector will be
built. Gluonic excitations, the physics of strange and charm quarks and nucleon
structure studies will be performed with unprecedented accuracy thereby
allowing high-precision tests of the strong interaction. The proposed PANDA
detector is a state-of-the art internal target detector at the HESR at FAIR
allowing the detection and identification of neutral and charged particles
generated within the relevant angular and energy range. This report presents a
summary of the physics accessible at PANDA and what performance can be
expected.Comment: 216 page
Technical Design Report for the: PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance
of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect
charged particles as close as possible to the interaction zone. Design criteria
and the optimisation process as well as the technical solutions chosen are
discussed and the results of this process are subjected to extensive Monte
Carlo physics studies. The route towards realisation of the detector is
outlined.Comment: 189 pages, 225 figures, 41 table
- …