65 research outputs found
Quasinormal modes for the SdS black hole : an analytical approximation scheme
Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter
(SdS) black hole are investigated. An analytical approximation is proposed for
the problem. The quasinormal modes are evaluated for this approximate model in
the limit when black hole mass is much smaller than the radius of curvature of
the spacetime. The model mirrors some striking features observed in numerical
studies of time behaviour of scalar perturbations of the SdS black hole. In
particular, it shows the presence of two sets of modes relevant at two
different time scales, proportional to the surface gravities of the black hole
and cosmological horizons respectively. These quasinormal modes are not
complete - another feature observed in numerical studies. Refinements of this
model to yield more accurate quantitative agreement with numerical studies are
discussed. Further investigations of this model are outlined, which would
provide a valuable insight into time behaviour of perturbations in the SdS
spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to
appear in Phys. Rev.
Scalar wave propagation in topological black hole backgrounds
We consider the evolution of a scalar field coupled to curvature in
topological black hole spacetimes. We solve numerically the scalar wave
equation with different curvature-coupling constant and show that a rich
spectrum of wave propagation is revealed when is introduced. Relations
between quasinormal modes and the size of different topological black holes
have also been investigated.Comment: 26 pages, 18 figure
Radiative falloff in Einstein-Straus spacetime
The Einstein-Straus spacetime describes a nonrotating black hole immersed in
a matter-dominated cosmology. It is constructed by scooping out a spherical
ball of the dust and replacing it with a vacuum region containing a black hole
of the same mass. The metric is smooth at the boundary, which is comoving with
the rest of the universe. We study the evolution of a massless scalar field in
the Einstein-Straus spacetime, with a special emphasis on its late-time
behavior. This is done by numerically integrating the scalar wave equation in a
double-null coordinate system that covers both portions (vacuum and dust) of
the spacetime. We show that the field's evolution is governed mostly by the
strong concentration of curvature near the black hole, and the discontinuity in
the dust's mass density at the boundary; these give rise to a rather complex
behavior at late times. Contrary to what it would do in an asymptotically-flat
spacetime, the field does not decay in time according to an inverse power-law.Comment: ReVTeX, 12 pages, 14 figure
Radiative falloff of a scalar field in a weakly curved spacetime without symmetries
We consider a massless scalar field propagating in a weakly curved spacetime
whose metric is a solution to the linearized Einstein field equations. The
spacetime is assumed to be stationary and asymptotically flat, but no other
symmetries are imposed -- the spacetime can rotate and deviate strongly from
spherical symmetry. We prove that the late-time behavior of the scalar field is
identical to what it would be in a spherically-symmetric spacetime: it decays
in time according to an inverse power-law, with a power determined by the
angular profile of the initial wave packet (Price falloff theorem). The field's
late-time dynamics is insensitive to the nonspherical aspects of the metric,
and it is governed entirely by the spacetime's total gravitational mass; other
multipole moments, and in particular the spacetime's total angular momentum, do
not enter in the description of the field's late-time behavior. This extended
formulation of Price's falloff theorem appears to be at odds with previous
studies of radiative decay in the spacetime of a Kerr black hole. We show,
however, that the contradiction is only apparent, and that it is largely an
artifact of the Boyer-Lindquist coordinates adopted in these studies.Comment: 17 pages, RevTeX
Field propagation in de Sitter black holes
We present an exhaustive analysis of scalar, electromagnetic and
gravitational perturbations in the background of Schwarzchild-de Sitter and
Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by
means of a semi-analytical (WKB) approach and two numerical schemes: the
characteristic and general initial value integrations. The results are compared
near the extreme cosmological constant regime, where analytical results are
presented. A unifying picture is established for the dynamics of different spin
fields.Comment: 15 pages, 16 figures, published versio
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases. Stress-related psychiatric disorders across the life spa
Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa
In MRI scans of patientswith anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknownwhether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlyingAN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlationsrangedfrom-0.10to0.23(allp > 0.05). Thereweresomesigns ofaninverseconcordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [ 0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune systemrelevant genes, in particularDRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain-and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN.Stress-related psychiatric disorders across the life spa
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. Methods: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. Findings: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. Interpretation: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed. Funding: Bill & Melinda Gates Foundation
- …
