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We present an exhaustive analysis of scalar, electromagnetic, and gravitational perturbations in the back-
ground of Schwarzchild—de Sitter and Reissner—Nordstide Sitter spacetimes. The field propagation is
considered by means of a semianalytiQ&/KB) approach and two numerical schemes: the characteristic and
general initial value integrations. The results are compared near the extreme cosmological constant regime,
where analytical results are presented. A unifying picture is established for the dynamics of different spin
fields.
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[. INTRODUCTION initially the so-called quasinormal modes, which are sup-
pressed at later time by the tails. The first can be understood

Wave propagation around nontrivial solutions of Einsteinas candidates for normal modes which, however, déejr
equations, black holes in particular, is an active field of re-energy eigenvalues becomes compleas in the ingenious
search(see[1-3] and references thergiriThe perspective of mechanism first described by Gamow in the context of
gravitational wave detection in the near future and the greatuclear physicq12]. After the initial transient phase, the
development of numerical general relativity have increasegroperties of the resulting waves are more related to the
even further the activity on this field. Gravitational waves background spacetime rather than to the source itself.
should be especially strong when emitted by black holes. The It is well known that for asymptotically flat backgrounds
study of the propagation of perturbations around them isthe tails decay according to a power law, whereas in a space
hence, essential to provide templates for gravitational wavevith a positive cosmological constant the decay is exponen-
identification. On the other hand, recent astrophysical obsetial. Curiously, =0 modes for scalar fields in dS space-
vations indicate that the universe is undergoing an acceletimes, contrasting with the asymptotic flat cases, exponen-
ated expansion phase, suggesting the existence of a sméllly approach a nonvanishing asymptotic vaja8,14]. We
positive cosmological constant and that de Siftk) geom-  detected, by using a noncharacteristic numerical integration
etry provides a good description of very large scales of th&cheme, a dependence of this asymptotic value on the initial
universe[4]. We notice also that string theory has recentlyvelocities. In particular, it vanishes for static initial condi-
motivated many works on asymptotically anti—de Sittertions. Our results are in perfect agreement with the analytical
spacetimegsee, for instancg5-§|). predictions off 14].

In this work, we perform an exhaustive investigation of The semianalytical analyses of this work were performed
scalar, electromagnetic, and gravitational perturbations in thby using the higher order WKB method proposed by Schutz
background of Schwarzchild—de Sit3dS and Reissner— and Will [15], and improved by lyer and Wil[16,17]. It
Nordstran—de Sitter(RNdS spacetimes. Contrasting with provides a very accurate and systematic way to study black
the noncharged case, in the RNdS one the electromagnetimle quasinormal modes. We apply it to the study of various
and gravitational perturbations are necessarily coupled. Wperturbation fields in the nonasymptotically flat dS geometry.
scan the full range of the cosmological constant, from theQuasinormal modes are also calculated according to this ap-
asymptotic flat case X=0) up to the critical value ofA proximation, and the results are compared to the numerical
which characterizes, for the noncharged case, the Nariai s@nes whenever appropriate, providing a quite complete pic-
lution [9]. Two different numerical methods and a higherture of the question of quasinormal perturbations for dS
order WKB analysis are used. The results are compared nebtack holes.
the extremeA regime, where analytical results can be ob- Concerning the charged case, we analyze in detail the
tained. wave propagation of the massless scalar field and coupled

We recall that for any perturbation in the spacetimes weelectromagnetic and gravitational fields in the RNdS space-
consider that, after the initial transient phase, there are twtme. An important difference concerning the dynamics of
main contributions to the resulting asymptotic wa®,11:  the electromagnetic and gravitational fields is that there are

no pure modes, since both are interrelated. We will show that
the direct picture of the evolution presents us with perfect

*Electronic address: cmolina@fma.if.usp.br agreement of quasinormal frequencies with those obtained
TElectronic address: dgiugno@fma.if.usp.br by using the approximation method suggested 16,16
*Electronic address: eabdalla@fma.if.usp.br One important point assessed is the dependence of the fields’
SElectronic address: asaa@ime.unicamp.br decay on the electric charge of the black hole, including the
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asymptotically flat limit, for which we expected to find traces al= ri + r§+ rafe, 3
of a power-law tail appearing between the quasinormal
modes and the exponential tail. 2mad=r ry(r +re). (4)

Two very recent works overlap our analysis presented
here. A similar WKB approach, presented[it8], was used If 9m*A =1, the zerog , andr. degenerate into a double
very recently by Zhidenkd19] to study SdS black holes, root. This is the extreme SdS black hole.fA>1, there
giving results in agreement with ours. Yoshida and Futamasere no real positive zeros, and the metd¢ does not de-
[20] used a continued fraction numerical code to calculatescribe a black hole.
qguasinormal mode frequencies, with special emphasis on In both the SdS and RNdS cases, we shall study the per-
high order modes. Our results are also compatible. Finallyiurbation fields in the exterior region, defined as
we notice that solutions of the wave equation in a nontrivial
background have also been used to infer intrinsic properties T.={(tr,0,¢),r,<r<rg. ®)
of the spacetn_‘néZl]. . . In this regionT, , we define a “tortoise coordinate(r) in

The paper is organized as follows. Sec. Il provides theo-

. . . X the usual way,
retical considerations and reviews some well-known results
that were useful to our work; Sec. Ill briefly explains the 1 1 1
numerical and semianalytical methods employed, followed x(r)=—2—In(rc—r)+ 2—In(r—r+)—2—In(r—r_)
by Sec. IV, which presents, in detail, our results on field Ke K+ -
dynamics for near extreme SdS and RNdS geometries. Sec-
tion V deals with the so-called intermediary region, where + 5
the geometries are not extreme. Data on the SdS limit and on
exponential tails are also presented. Section VI deals with thgjith
near asymptotically flat region, and Sec. VIl presents our
conclusions. 1|dh(r)

72| Tdr

In(r—ry) (6)

Kn

)

r=r;

Il. METRIC, FIELDS, AND EFFECTIVE POTENTIALS

The metric describing a charged, asymptotically de Sitterl '€ constants_, .., and« are the surface gravities as-

spherical black hole, written in spherical coordinates, isSOCi""tefj with the Cauchy, event, and cosmologilcal hori.zons,
given by respecuvely_. For_ the SdS case, the term associated with the
Cauchy horizon is absent.
ds?=—h(r)dt2+h(r) 1dr2+r3(d?+sirfd$?), (1) Consider now a scalar perturbation field obeying the
' massless Klein-Gordon equation

where the functiorh(r) is O0d=0. 8
2m g? Ar? The usual separation of variables in terms of a radial field
h(ry=1-—+ 2 3 (2 and a spherical harmonic,¥,(6,¢),
r r
D=3 Ly (0,6) ©)
The integration constants and q are the black hole mass o T TR TT)

and electric charge, respectively. If the cosmological con-

stant is positive, we have the Reissner—Nordstrde Sitter leads to Schidinger-type equations in the tortoise coordinate
metric. In this caseA is usually written as\ =3/a?, where for each value of,

the constant is the “cosmological radius.”

The spacetime causal structure depends strongly on the Y3t YRt
zeros ofh(r). Depending on the parameters g, anda, the -t =V (10
function h(r) may have three, two, or even no real positive ot IX

zeros. For the RNdS cases we are interestech(n) has
three simple real, positive roots(, r . , andr_), and a real
and negative root,=—(r_+r_ +r.). The horizonsr _,

where the effective potentids®is given by

€€+1) 2m 29> 2

r,, andr., with r_<r,<r., are denoted Cauchy, event, VES(r)=h(r) — _ (12)
and cosmological horizons, respectively. r2 3 4 a2

For the SdS caseqE0), and assumingn>0 and O
<9m?A <1, the functiorh(r) has two positive zeros, and The situation for higher spin perturbations is quite differ-
r. and a negative zern,=—(r . +r.). This is the SdS ge- ent. In the SdS geometry, in contrast to the case of an elec-
ometry in which we are interested. The horizensandr, trically charged black hole, it is possible to have pure elec-

with r, <r., are denoted the event and cosmological horitromagnetic and gravitational perturbations. For both cases,
zons, respectively. In this case, the constantand a are  we have Schidinger-type effective equations. For the first,
related to the roots by the effective potential is given by22]
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(€+1) p1=3m+9m?+8cc?, (19

Ve =h(r)——, 12
r P,=3m— y9m?+8cd?, (20)
with €=1. The gravitational perturbation theory for the ex- rh(r) 1 2
terior Schwarzschild—de Sitter geometry has been developed W= (2cr+3m)+ —| cr+m+ —Ar3) ,
in [2,5]. The potentials for the axial and polar modes are, ® ® 3
respectively, (21
— 2
¢(€+1) 6m U=(2cr+3m)W+(w—cr—m— —Ar3)
VaX(r)=h(r) -—. (13 3
r2 r3
2cr?h(r)
-, (22)
2h(r) ®
VPO(r)= ——————[9m3+3c?mr?
r3(3m+cr)? — 2092
w=Cr+3m—T. (23

+c2(1+c)r3+3m?(3cr—Ard)], (14

ith 20— do= bati ith In the limit g—0, the RNdS potential¥’, go into the SdS
‘2’20 2c= (6~ 13](€+2) If"“?l 6;2‘ EOL pe;tfur ations wit s Polar and axial potentia*. Therefore, the minimund for
, we can show explicitly that all the effective potentials ¢ fie|gs jg =2, while theV * fields admit¢=1 as their

V(X)EV(r(x)) are positive def|n!te. For scglar perturbatlonsminimum ¢ value, since they become electromagnetic per-
with €=0, however, the effective potential has one zero

. o . turbations in the limitg— 0.
point xo and it is negative fox>x,.

The perturbation theory for the RNdS geometry has been,; NUMERICAL AND SEMIANALYTICAL APPROACHES
developed in23]. There are neither purely electromagnetic
nor gravitational modes. Indeed, we have four mixed elec- A. Characteristic integration
tromagnetic and gravitational fields, two of them called polar |, [24] a simple but at the same time very efficient way of
fieldsZ; andZ, (since they impart no rotation to the black dealing with two-dimensional d’Alembertians has been set
hole) and two named axial fields;, andZ, . Itis possible to  up. Along the general lines of the pioneering w$as], the
express their dynamics in four decoupled wave equationsuthors introduced light-cone variables=t—x and v =t
two for the axial fields and two for the polar fields. Their +x, in terms of which all the wave equations introduced
deduction can be found 23] and references therein. Here have the same form. We callthe generic effective potential
we just show the expressions, which will be useful through-and ¢, the generic field, and the equations can be written, in
out our work. terms of the null coordinates, as

The axial perturbationZ, , are governed by wave equa-

tions which have the same form as E#0), but with effec- 4
tive potentials given by o Aouap VW)= Vr(u))ie(up). @49
r 2 o2t an?] In the characteristic initial value problem, initial data are
Vi=h(r) tery + 41_ 3m— vOm+8cq , specified on the two null surfaces=uy andv=uv,. Since
r2 r2 r3 the basic aspects of the field decay are independent of the
- (15 initial conditions(this fact is confirmed by our simulations
we use
€(€+1) 49> 3m+V9Im?+8cg? [ (0—vy)?
V5, =h(r +—- , c
2 =h(r) r2 2 (3 Ye(U=Ug,v)=exg ——2], (25)
- - (16) | 20
respectively, with 2= (¢ —1)(¢ +2). o= | (vovo)? 26)
The polar perturbationZIz are subjected to rather cum- Ye(Uv=vo)=exq 262 |
bersome potentials, as we can see below: )
Due to the size of our lattices, the latter constant can be set to
h(r)[ 1 T zero for any practical purpose.
Vi=——U+=(pi—p)W|, (17) Since we do not have analytic solutions to the time-
r3 | 2 1 dependent wave equation with the effective potentials intro-
duced, one approach is to discretize Etfl) and then imple-
h(r)[ 1 T ment a finite differencing scheme to solve it numerically.
,=——|U—=(p;—p)W|, 18 One possible discretization, used, for example,8y13,14,
2 3 2(P1 P2)
r= L 1 is
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We(W)+ ¢ (E) The results do not depend on the details of the initial condi-

e(N) = (W) + we(E)—ng(S)—AZV(S)T tions. They are compatible with the ones obtained by the
usual characteristic integration, with the only, and significant,
+0(A%Y), (27) exception of the¢=0 scalar mode. As we will see, its

asymptotic value depends strongly on the initial velocities

where we have used the definitions for the poilts (u #:(0x), a behavior already advanced in the wgtk].

+A,0+A), W=(u+A,v), E=(u,v+A), and S=(u,v).

With the use of expressiof27), the basic algorithm will

cover the region of interest in thev plane, using the value C. WKB analysis

of the field at three points in order to compute it at a fourth.  Considering the Laplace transform of E40), one gets
After the integration is completed, the valugg(Unax,v)  the ordinary differential equation

and ¢,(u,vmay) are extracted, wher@,,x (vmay IS the

maximum value ol (v) on the numerical grid. Taking suf- d2ie(x)

ficiently largeun, ., andv max, We have good approximations . —[$+V(X)1¢(x)=0. (33
for the wave function at the event and cosmological hori- dx

zons.

One finds that there is a discrete set of possible values for

B. Noncharacteristic integration such that the functioﬁxf, the Laplace-transformed field, sat-

It is not difficult to set up a numeric algorithm to solve 'Sfiés both boundary conditions,

Eqg. (10) with Cauchy data specified ontaonstant surface.

We used a fourth order ix and second order ih scheme lim ge8*=1, (34
(see, for instancé 26] for an application of this algorithm to X— =
seismic analysjs The second spatial derivative at a point
(t,x), up to fourth order, is given by lim e *=1. (35)
X— 4%
) 1
veltx) 12AX2[¢€(t'X+2AX) 164t x+Ax) By making the formal replacemest=iw, we have the usual
quasinormal mode boundary conditions. The frequeneies
+30(t,X) = 16 (t,X— AX) + o (t,Xx—2AX) ], (or s) are called quasinormal frequencies.
(28) The semianalytic approach used in this wfik,16 is a

very efficient algorithm to calculate the quasinormal frequen-

while the second time derivative up to second order is cies, which have been applied in a variety of situatihg.
With this method, the quasinormal modes are given by

- l)[fg(t"‘At,X)_ZI//g(t,x)"‘l//((t_At,X)
Pe(t,x)= - (29)

At? w2=(Vo+ P)—i(n+% (—2viHY41+Q) (36

Given ¥ (t=ty,x) and ¢,=(t=to—At,x) [or ,(t
=t4,X)], we can use the discretization of E§&8) and(29)  where the quantitie® andQ are determined using
to solve Eq.(10) and calculatef,(t=ty+ At,x). This is the

basic algorithm. At each interaction, one can control the error 1 [y(®] /1 1 [v® 2
by using the invariant integrathe wave energyassociated p=—| — (_+ aZ) — —| —| (7+60a?), (37
with Eqg. (10 8lv|l4 288 v
1 ’ 2.1, 2 2 3)14
E=5 | [get) ]+ [he(t,) 17+ VX) ¢ (1, x)7]dx. 1 5 [V ,
=—— ——| —| (77+188
309 © —2v® | 6912 v ( )
. We make an exhaustive ana_lysi; _qf the as_y_mptotic behav- 1 [v@2ay®
ior of the solutions of Eq(10) with initial conditions of the I 0 51+ 10002
form 384 () ( )
\Y
0
(X—Xg)? 1 [v@)? 1 [vey®
e(0)=exp — ————|, (3D 2| (67+68a%)+ —| ———
209 2304 v 288 v )2
. (x=xg)? vE
Ye(0x)=Aexg — . (32 X (19+28a%)— — | —|(5+4a?) ;. (38)
20% 288| v@
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In Egs.(36)—(38), a=n+1/2 and the superscrigt) de- 10° - T T T
notes differentiation, with respect ¥ of the potentiaV(x). Wk ' -
The potential and its derivatives are then calculated at the_
point Xo, whereV(x) is an extremum. The integerlabels = 210

the modes 10°%° - [— Scalar Field - -
- —- Electromagnetic Field LT N
L

20 o 2 -

0,1,2..., Réw,)>0, 10— 5(|)o 1o|oo ' 15|oo mzoloo ' 25|00 3000
n= 39 v
-1,-2,-3,..., Réw,)<O0. (39 o
-10
IV. NEAR EXTREME LIMIT "
A. Schwarzschild-de Sitter black hole 10%

—— Scalar Field
==+ Axial and Polar Gravitational Fields

To characterize the near extreme limit of the
Schwarzschild—de Sitter geometry, it is convenient to define

the dimensionless parametér

L | | | | L u
0 250 500 750 1000 1250 1500
v

FIG. 1. Decay of the scalar and electromagnetic fields with

— =1, and of the scalar, axial, and polar gravitational fields, with
— J1_om2
6=V1-9m°A. (40 =2, with the SdS geometry approaching the near extreme limit. The

. — . L arameters for the geometry are=1.0 and6=0.01,0.1,0.3.
The limit 0< <1 is the near extreme limit, where the ho- P g y

rizons are distinct, but very close. In this regime, analytical

re—r
expressions for the frequencies have been calcul2£a8|. o=——— , (43
For the scalar and electromagnetic fields, the quasinormal M+
frequencies are where 0<8<1. In this limit the dynamics can be analyti-
A 12 1712 1 cally characterized, as has been analyzel®ifj. More gen-
W= §—3m2A2} Hf(%ul)_z} —|(n E)} Eara]l settings, including RNdS geometries, were explored in
28].
(41) The functionh(x)=h(r(x)) can be analytically calcu-
For the axial and polar gravitational fields, the frequenciegated [27.28, with the result
are given by (re—ry)k
h(x)= —————+0(5%). (44)
A b ol vz ( 2 cosR( k., X) (
wn= §—3mA (€+2)(€—1)—Z —I1 n+§

We have five different fields at hand: the scalar fierd J,
(42 two axial fields ¢; ,Z;), and two polar fields Z; ,Z;).
They can be compared with the numerical and semianalytiEor each one, we have a different potential. In the near ex-

methods presented in the previous section. treme limit, we have

Direct calculation of the wave functions confirms that, in 8104 | | | | :
the near extreme limit, their dynamics is simple, with the ® Soalar and Electomagnetio Fislds 2
late-time decay of the fields being dominated by quasinormal B Axial and Polar Gravitational Fields ol

modes. All the types of perturbation tend to coincide near the
extreme limit. In addition, as we approach the extreme limit,

the oscillation period increases and the exponential decay 2xto™*
rate decreases. These conclusions, illustrated in Fig. £ for

=1,2, are consistent with the ones presentefRih2§. ”gj i
By using a nonlinear fitting based ony& analysis, it is <
possible to estimate the real and imaginary parts ofrthe -~
o4 _

=0 quasinormal mode. These results can be compared witl
the analytical expressions in the near extreme cases. In Fic
2, we analyze the dependence of the frequencieé.ofhe

accordance between analytic and numerical data is extremel
good. 0

80

B. Reissner-Nordstrom~—de Sitter black hole FIG. 2. Curve of Reg,)? with £(€+ 1), for the scalar, electro-

For the RNdS case, the near extreme limit corresponds tmagnetic, and gravitational fields, in the near extreme limit. The
the situation where the event and cosmological horizons aréots are the numerical results and the solid lines represent the ana-
very close to each other. It is natural to define the dimensioniytical results. The parameters for the geometry mre1.0 ands
less paramete$ as =0.01.
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Vo for all potentialsvf2 and we go to the near extreme limit.
V(X)=Q(r;)h(x)+0(8) = ———+0(4). For the two axial potentials, we have
cost(x,X)
(45 o (remr) ey 2
Vo =———[t(+1)ri+4g*~r,S], (47
The constant/, in the scalar case is denoted ¥y°, in the 2rs

axial cases by[V§ ,V27}, and in the polar cases by

{V3* ,VZ*}. The foregoing expression is a$ahl-Teller po- V2 — (re—re)ee 0+ 12 +402—
tential [29]. 0 2t [E(€+1)ri+49°—T1.,S;],
For the scalar fieldy §° has been calculated [28] and is (48)
given by
where
w CE+L)(re—ry)xy 48 S;=3m— \/9m2+4(€+2)(€—1)q2, (49
= ) 46
0 2
2y S,=3m+\Om2+ 4(¢+2)((— 1)q% (50)

We proceed to the analysis of the coupled electromagnetic We can now turn to the two polar potentials. The con-
and gravitational fields. We take the analytical expressionstantsv(l,+ andvé+ are given by

Ki(re—rg) _(20r1+3mr++r+\/9m2+ 8cg®)(cry+m+ 2Ari/3)
Vet= +C|, (51)
rt | cr,+3m—2qg%/r,

Ko (re—r )| (2cr2 +3mr, —r,\Jom?+8c?)(cr, + m+2Ar3/3) .

2rt | cry+3m—2q%/r,

2+ _
VO -

Cl, (52

with C=2mr,—2g?-2Ar%/3 and Z=(£+2)({—1). v, 1
The quasinormal modes associated with thesdhbTeller @n _ \ /—0———i , (53)
potential have been extensively studig&,31]. The frequen- K k2 4

ciesw, are given by

with ne{0,1, ...} labeling the modes. Using expression
(53) and the expression faf, the frequencies can be easily
calculated.

1x1074 | | We can also use the numerical method to analyze the field
- 1 decay in the near extreme limit. Using a nonlinear fitting
8x10-51 g based ony? analysis for the wave functions, we can estimate
s the quasinormal frequencies. These results can be compared
q=05 with the analytical expressions in the near extreme cases.
6x1075~ g:g;; The accordance between both sets of results is extremely
L ] good. We illustrate this point in Figs. 3-5.

Direct calculation of the wave functions confirms that, in
the near extreme limit, the dynamics of the fields is simple,
with the late-time decay being completely dominated by qua-
2x10-5 - sinormal modes.

4prene

Re ((00)2

4x107%- .

0 | 1 ! 1 1 V. INTERMEDIARY REGION IN PARAMETER SPACE
0 10 20 30 40 50 60
i+

A. Schwarzschild-de Sitter black hole
FIG. 3. Near extreme fundamental frequencies for different val-
ues of the chargg, for the lower multipole mode of the scalar field.
Analytical values are represented by straight lines, and numerical Only scalar perturbations can have zero total angular mo-
values appear as dots. The parameters for the geometrynare mentum. Solutions of Eq10) with £=0 lead to a constant
=1.0 andé=10"3. tail, as already shown ifiL3,14). This is confirmed in Fig. 6.

1. Scalar field with€=0
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X102

8x1073

750 1000
L L L L

|
[ 7

TS
i
FIG. 6. Asymptotic solutiongh(x,t) obtained by noncharacter-
FIG. 4. Near extreme fundamental frequencies for different val-istic numerical integration witlf =0, A=10"* andm=1.0. The
ues of the chargae, for the lower multipole mode of the polar fields. curves correspond to different values Afin the initial condition
On the left are the data faZ; and on the right, forz; . The  (32.

parameters for the geometry are=1.0 andé=10"3.

. . later there is a region of power-law decay, which continues
The novelty here is the dependence of the asymptotic valug yefinitely in an asymptotically flat space. In the presence of
on they,(0x) initial condition. Figure 6 reveals the appear- 5 positive cosmological constant, however, an exponential
ance of the constant valug, for larget and its dependence decay takes over in the latest period.

on ,(0x). Note thate, falls below 107 for ,(0x)=0. As the separation of the horizons increases, the quasinor-
These results are in accordance with the analytical prediomal frequencies deviate from those predicted by expressions
tions of[14], which give (41) and(42). In Fig. 7, this is illustrated fof =1,2. Some
qualitatively different effects show up when we turn away

r(re. ds from the near extreme limit. For a small cosmological con-
h(oo,r)= ?f $(08)s—. (54)  stant the asymptotic behavior is dominated by an exponen-
re’o h’(s) tially decaying mode rather than by a quasinormal mode, for

all perturbations considered.
2. Fields with €>0 It is interesting to compare the values obtained for the
We can have scalar and vector fields with angular momenfundamental modes using the numerical and semianalytic
tum €=1, and with¢>1, it is possible to introduce gravita- Methods. We find that the agreement between them is good,
tional fields also. Their behavior is described in general byfor the whole range of\. The difference is smaller for the
three phases. The first corresponds to the quasinormal mod8t values off. This is expected, since the numerical cal-
generated from the presence of the black hole itself. A littieculations work better in this region. In Table I, we illustrate

zZ, z, 1=1 =2
X102 X072 ——T——T——T— . 07— — T
[| ® Scalar I e 1
m q=01 02 o Electromagnetic| ,.*" B T
F |® q=03 1 r 1r .8 1
8x1073 A =05 > go 015 — — —
gxio3— | » a4=07 e T [ 17T 1
4 - P I .
+  Axial and Polar
6x103 B q 0.05 _— __ __ __
2 o L .11 P R N B
z X107~ 7] S T e — 77
4x1073
B b “0.025 1 F B =
> r Y 1 F N _
4x10°3 = g o0 4 F .
2X1074 = - 1 F ]
o ] q -0.075—| e Scalar | ® Scalar
| | = Electromagnetic ® || ® Axial and Polar A
o P S R B TP B [ Y S A N R

|
1 2

FIG. 5. Near extreme fundamental frequencies for different val-
ues of the charge, for the lower multipole mode of the axial fields. tal frequencies{=0) with «, . The dotted lines are the near ex-
The data forZ; appear on the left, and those f8§ on the right. treme results, the dots are the numerical results, and the continuous
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TABLE I. Fundamental frequencies for the scalar field in SdS, obtained using numerical and semiana-
lytical methods. In this tablen=1.0.

q=0 Numerical Semianalytical
14 A Re(wg) —Im(wq) Re(wg) —Im(wg)
1 1.000< 1075 2.930x 107! 9.753x 107 ¢ 2.911x10°* 9.780x 1072
1.000< 10™4 2.928x 107! 9.764x 1072 2.910x10°* 9.797x 1072
1.000< 1073 2.914<10°1 9.726x 102 2.896x 107! 9.771x 1072
1.000x< 102 2.770<10°1 9.455x 1072 2.753x10°¢ 9.490x 102
1.000<10°* 8.159< 102 3.123x 1072 8.144x 1072 3.137x 1072
2 1.000x10°° 4.840<10°* 9.653< 10 2 4.832x10°* 9.680x< 10 2
1.000< 10~4 4.833x 107t 8.948x 1072 4.830<10°* 9.677x 1072
1.000x 1073 4.816x10°* 8.998x 1072 4.809<10°* 9.643x 1072
1.000x 1072 4.598< 10t 8.880x 1072 4.592<10°* 9.290x 1072
1.000x 1071 1.466x 1071 3.068x 1072 1.466x 1071 3.070x 1072
3 1.000< 1075 6.769x 1071 8.662x 1072 6.752x 1071 9.651x 1072
1.000< 10™4 6.754x 1071 8.654x 10 2 6.749x 1071 9.647x 1072
1.000< 103 6.732x10°1 8.660< 10 2 6.720<10°* 9.611x 10 2
1.000x< 102 6.437x 10 2 9.200< 10 2 6.428< 10 2 9.235< 10 2
1.000< 10 ¢ 2.091x 10 2 3.054x 102 2.091x 102 3.056x 10 2

these observations with a few values/of It is important to

mention that quasinormal frequencies for the SdS black hole

bations in SAS geometry behave as

were already calculated in a recent pajid], by applying a Wt~e” kexd with t—soo, (55)
variation of the WKB method used hef&8]. There are ear-
lier papers calculating quasinormal modes in this geometry, el ,
for example,[32]. l//?l’ve kexd with t—o0, (56)
The first highern modes cannot be obtained from the
numerical solution, but can be calculated by the semianalyti- ?ke*kiipt with t—oo, (57)
cal method. As the cosmological constant decreases, the real
and imaginary parts of the frequencies increase, up to the _
ginary p g P ¢?°~e‘kggp‘ with t—oe (58

limit where the geometry is asymptotically flat. The behavior
of the modes is illustrated in Fig. 8. The behavior of the
electromagnetic field is similar.

for t sufficiently large. At the event and the cosmological
A x? analysis of the data presented in Fig. 9 shows thaf0rizons,t is substituted, respectively, hyandu.

the massless scalar, electromagnetic, and gravitational pertur- 1he numerical simulations developed in the present work
reveal an interesting transition between oscillatory modes

Scalar Axial and Polar Grav.
Or— T O— T Scalar (/= 1) Electromagnetic (/=1)  Axial and Polar Grav. (/= 2)
A m e T — T
. — A=34x10” — 4=8x10"
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FIG. 8. Quasinormal modes of the scalar, axial, and polar gravi-

FIG. 9. Exponential tails for the scalar and electromagnetic

tational fields, for higher modes. The parameter for the curves aréelds with € =1, and for the axial and polar gravitational field with
€=2. In the graphsm=1.0.

m=1.0 andA=10"3

104013-8



FIELD PROPAGATION IN de SITTER BLACK HOLES PHYSICAL REVIEW [®9, 104013 (2004

Scalar (I=1) Electromagnetic (/= 1) Axial and Polar Grav.(I=2) Electromagnetic Axial and Polar Grav.
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FIG. 10. Approach to constantIm(w,) andkey,, for the sca- FIG. 11. Dependence ¢, on . and¢, in the SAS geometry.

lar, electromagnetic, and gravitational fields, in the SdS geometryrhe symbols indicate the numerical values, and the solid lines are
Above a certain critical value ofA (roughly 1.7X10 <, the appropriate fittings. For the left grapkSS =1.077x10 4

exp

—3 -3 i =
4.0x 10. , and 1. 10 .,.respectlvely, for the parameters taken, 1 0 984¢,+3.545¢2, 5%p= —1.863<10 442.010¢,+2.608¢2,
ghown in the graphsa tail is not observed. For all curves, the mass g kSS,= —1.959¢ 10 *+3.028¢,+ 2.9782. For the center
is set tom=1.0. graph: ke, p=2.082 10 *+1.988¢,+6.141k2, ke,

_ _ o =2.712<10 *+2.974,+8.284Z, and K& ,=3.737x 10"
and exponentially decaying modes. As shown in Fig. 10, as 3.984,+4.517%>2. For the right graph:kg),=2.616x 10 *

the cosmological constant increases, the absolute value of. 2 974 + 9.895 and kaxp=4.484< 10 “+ 3.896¢, + 18.92¢2.
—Im(wo) decreases. In the graphsm= 1.0.
Above a certain critical value ok we do not observe the

exponential tail, since the coefficielt,, is larger than  checked that the introduction of electric charge does not alter
—Im(wo) and thus the decaying quasinormal mode domipjs picture.

nates. But forA smaller than this critical value; Im(wg) If ¢>0, we introduce th&; fields, and for¢>1 theZ;

turns out to be larger thakey,, and the exponential tail fig|gs can also be analyzed. The first point studied is the

dominates. Certainly, for a small enough cosmological congasinormal phase. If the cosmological constant is high

stant, the exponential tail dominates in the various cases CORMough, the decay is dominated by quasinormal modes, even

sidered here. S . ) when they no longer are accurately predicted by the expres-
Another aspect worth mentioning in the intermediate rejong(53). This scenario, illustrated in Fig. 12, is valid for all

. . I
gion is the dependence of the paramete)§,, k&, Kexp.  fields considered, with any charge smaller than its critical

andkgy,on ¢ andk.. The results suggest that tkg,are at  yalue.
least second differentiable functions f. Therefore, close We have observed that the influence of the electric charge
to k.=0, we approximate is mild, although not trivial. The range of variation of the
guasinormal modes with the charge is not very large. We
sc sc, 2
Kaxp( Kc) =€ (Kt CKE), (59
| _ W= T T T T T T T T T T
kgxp( Kc)%kgip Kc)%kggp Kke)=(€+1)(rc+c® gK<2:)- Mo © 7T e
(60) 10-10 » mn‘m\"mq' S ey .:....:...7...:_._:,_,2,_..4.
R l'nv,\ o
Previous results are illustrated in Fig. 11. N0 — v
WPk |- A=010 m""“-"\"nn oy .
— A=0.08 v,
B. ReissnerNordstrom—de Sitter black hole wh L L sy L vy

. . . . 0 20 400 600 800 1000 1200 1400 1600 1800 2000
We assess here the behavior of the fields in RNdS exterio g0 ————T—T—T—

geometries that are not near extreme, nor close to the asymp BT
totically flat limit. Direct numerical simulations and semi- 1° %
analytical(WKB) methods were largely employed to charac- s 1=

T

1d

terize the fields in this region. oL [Asen |
For scalar perturbations with=0, the effective potential 10 — A=008 R It
is not positive definite. As already shown [ih3,14], solu- T T BT CoRT 2(’)00

. . . 0 200 400 600 800 1000 1200
tions of Eq.(10) with £=0 lead to a constant tail. It was v

observed that in the SAS geometry there is a dependence of ;5 12 Quasinormal modes for RN&S andz, fields. The

the asymptotic value on thg,(0,x) initial condition, in the parameters for the geometry age- 0.5 andm=1.0. We have used
context of a Cauchy type initial value problem. We have¢=2. The results are similar for the other fields considered.
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=0 n=1 n=2 + lE .
2.,.,“,|. 2T b L WL B ZI~ekexptW|tht—>oo, (62
L |[— =2 ] | |[— =2 1 | |— =2
..... ;=j f=i s f=i
PR o i R | P K o P g . 2+ .
s = = = Z; ~e ked with t—oo, (63
& 1

for t sufficiently large. At the event and the cosmological
horizonst is substituted by andu, respectively. Figure 14
illustrates this point, which was noted [t3,14 for scalar

0.5

0.099 T 0.51

0.098 |- * fields, and we have extended this consideration to coupled
ool Tosos 05 glectromagnetlc and gravitational f|eld§. In .the aforemen-
H L 1 tioned figure we compare the exponential tails at the event
y 00061 1 020 odof E horizon for exterior RNdS geometries.

0.095— An important point is that, unlike the quasinormal mode

oooal ittt lopesl il gpel i1 1 frequencies, the exponential coefficients have shown no de-

0 |0.2‘0.4.0.6‘0.8. 1 0 10.2‘0.4I0.6‘0.8‘ 1 0 ‘O.2I0.4‘0.6‘0.8I 1 . .
q q q pendence on the black hole’s electric charge, for all kinds of
fields at hand. Close ta.=0, our results are compatible

- .
FIG. 13. Dependence & field frequencies o, for both the yWith the expressions

real and imaginary parts, in RNdS. The results are qualitativel
similar for the other fields considered. The parametersnarel.0
andA=10"%.

kSsp( ko) =~ € (1 +C52), (64)

illustrate this point in Fig. 13. It is interesting to compare the Koxp(ko)~(€+1) (ko' “k5), =12, (65
values obtained for the fundamental modes using the numeri-

cal and semianalytical methods. We find a very good agre€or any ¢ lower than its extreme value. The dynamics of the
ment between these results. The difference is smaller for thifelds in de Sitter spacetimes is therefore very different from

first values of¢. This is expected, since the numerical cal- similar cases in anti—de Sitter geometries, in which for high

culations work better in this region. In Tables 1I-VII, we charge there is an abrupt change in the fields’ dé8&yWe
have also explicitly assessed the behavior ofzhefields as

illustrate these observations for a few valueshoindg.

For all fields considered, with a small enough cosmologi-q— 0, comparing their quasinormal frequencies and expo-
cal constant, there is a qualitative change in the behavior afiential tails to those observed in the SAS fields. As an-
all fields considered. The late-time decay is dominated by aticipated, we found that thg, field behaves like the SdB"
exponential tail. Therefore in the RNdS geometry we have field and that theZ, field behaves like the Sd&~ field, if
the charge is small enough. We have observed that the RNdS
fields Z; tend smoothly to the SdS field".

sc .
Pi~e Kexdt with t—oo,

(61)

TABLE Il. Fundamental frequencies for the electromagnetic field in SdS, obtained using numerical and
semianalytical methods. In this tabla=1.0.

q=0 Numerical Semianalytical
(,’ A Re(wo) - |m((,()0) Re(wo) - Im(wo)
1 1.000x10°° 2.481x 1071 9.226x 10 2 2.459< 107! 9.310x 10 2
1.000< 10 * 2.481x 1071 9.223x 1072 24571071 9.307x 1072
1.000x 1073 2.475< 1071 9.176x 1072 2.448<1071 9.270x 1072
1.000x< 102 2.374<1071 8.839< 102 2.352x107¢ 8.896x 1072
1.000x 1071 8.035x 1072 3.027x 1072 8.023x 1072 3.033x 1072
2 1.000< 1073 4577x107t 8.985x 1072 4571x10°! 9.506x 1072
1.000x 10~4 4.575< 1071 8.991x 102 4.569< 101 9.502x 102
1.000x 1073 4.559x 1071 9.439x 102 4551x10°1 9.464x 1072
1.000x 102 4.371x1071 8.941x 1072 4.364x 101 9.074x 1072
1.000< 107! 1.458< 1071 3.037x 1072 1.458< 107! 3.038< 1072
3 1.000x10°° 6.578<10°! 8.365x 102 6.567< 107! 9.563x 1072
1.000<10™* 6.576x10°* 8.349< 1072 6.564< 1071 9.559x 102
1.000<10°3 6.547< 1071 8.399< 102 6.538< 107 ¢ 9.520< 102
1.000x 1072 6.276x 1072 8.852x 1072 6.267x 1071 9.125x 1072
1.000x 1071 2.085x 1072 3.039x 1073 2.085< 1071 3.040x 1072
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TABLE Ill. Fundamental frequencies for the axial and polar gravitational fields in SdS, obtained using
numerical and semianalytical methods. In this tabtes 1.0.

q=0 Numerical Semianalytical

€ A Re(wo) - |m(w0) Re(wo) - Im(wo)

2 1.000< 1075 3.738x 107! 8.883x 1072 3.731x10°t 8.921x 1072

1.000< 10™4 3.737x 107! 8.880x 102 3.730x 107! 8.918x 1072

1.000< 1073 3.721x10°! 8.850< 10 2 3.715x 107! 8.888x 102

1.000x< 102 3.566x 1071 8.538< 10 2 3.560<10 ¢ 8.572x 102

1.000x 1071 1.179x 1071 3.020x 1072 1.179x 107! 3.023x 1072

3 1.000x10°° 5.999< 10! 8.677x10 2 5.992x 10! 9.272<10 2

1.000< 10~4 5.996x 1071 8.676x 1072 5.990x 1071 9.269x 1072

1.000x 1073 5.972x 1071 8.971x 1072 5.966x 1071 9.234x 1072

1.000x 1072 5.725x 1071 8.695x 102 5.718<107* 8.874x 1072

1.000x 1071 1.900x 107! 3.030x 1072 1.900x 1072 3.032x 1072

4 1.000< 1075 8.106x 107! 8.810x 1072 8.091x 1071 9.417x 1072

1.000< 104 8.102x 1071 8.781x 10 2 8.087x 107! 9.413x< 102

1.000< 103 8.070< 107! 8.799< 10 2 8.055< 10! 9.376x10 2

1.000x 102 7.733x 1072 8.714x 1072 7.720<10° 1! 9.000x 102

1.000< 10 ¢ 2.564x 10 2 3.034x 108 2.563<10 ¢ 3.036x 102
VI. APPROACHING THE ASYMPTOTICALLY FLAT A new qualitative change occurs in this regime, namely, a
GEOMETRY decaying phase with a power-law behavior. Such a phase

' . ._occurs between the quasinormal mode decay and the expo-
Scalar fields in the SdS geometry near the asymptoticallyeniia decay phases. The field cannot be simply described

flat Iimit. were studied if13,14. In this case there. is a cle_ar by a superposition of the various modes, which would imply
separation between the event and the cosmological horizong, domination of the power-law phase. This is illustrated in
such that Fig. 15.
The situation for RNdS cases obeying EG6) is pre-
P r sented in Fig. 16. As can be seen in this figure, we have a
s=-°_"">ngp (66)  Perfect power-law tail developi_ng for Iargewhe_nAzo, as
My expected. For the RNdS exterior geometry with ldwal-

TABLE IV. Fundamental frequencies for tizg field in RNdS, withg= 0.5 andm= 1.0, using numerical
and semianalytical methods.

q=0.5 Numerical Semianalytical
(f A Re(wo) - |m(w0) Re(wo) - Im(wo)
1 1.000x 10 2.71x10°* 9.51x 10?2 3.28x10°* 9.53x10 2
1.000x< 10~ * 2.71x10°* 9.50x 10?2 3.28x10°* 9.53x 102
1.000x 1073 2.70<10° 1 9.47x 1072 3.27x10°1 9.49x 102
1.000x< 102 2.60x10°* 9.11x 1072 3.15x10°* 9.14x 102
1.000x 1071 1.16x10°% 4.08<10°? 1.40x 1071 4.08x 1072
2 1.000< 107 % 4.94<10°1 9.72x107? 4.94<10°1 9.71x 1072
1.000x 10~ 4 4.93x10°! 9.72x107? 4.94<10°1 9.71x 1072
1.000x 1073 4.91x10°?! 9.68<10°? 4.92<10°* 9.67x10°2
1.000x 1072 4.73x10°1 9.31x10°? 4.73x10°1 9.30x 102
1.000< 1071 2.09x10°* 4.10< 1072 2.09x10°* 4.16x10°?
3 1.000x10°° 7.05x10° 1 8.95x 10?2 7.05x10°* 9.77x 1072
1.000<10°* 7.05x10°* 8.94x 1072 7.05x10°* 9.76x 1072
1.000x 1073 7.02x10°1 8.87x10°? 7.02x10°1 9.73x107°2
1.000x 1072 6.77<10° 1 8.50x 102 6.76x10° 1 9.35x 102
1.000x 1071 2.98x10°1 4.10<10°? 2.98x10° ! 4.10x10°?

104013-11



MOLINA et al. PHYSICAL REVIEW D 69, 104013 (2004

TABLE V. Fundamental frequencies for tizg field in RNdS, withg= 0.5 andm=1.0, using numerical
and semianalytical methods.

q=0.5 Numerical Semianalytical
(f A Re(wo) - |m(w0) Re(wo) - Im(wo)
2 1.000x10°° 3.82x10°1! 8.96x 10?2 3.81x10°* 8.98x 102
1.000<10™* 3.82x10°* 8.96x 10?2 3.81x10°* 8.98x 1072
1.000< 1073 3.80x10°* 8.93x10°? 3.80x10°* 8.95x 102
1.000x 1072 3.66x10°1 8.67x 1072 3.65x10° 1 8.67x10°?
1.000x 1071 1.60x10°* 4.06x10°? 1.60x10°* 4.05x10°?
3 1.000< 1075 6.13x10° 1 8.59x 10?2 6.12x10° 1 9.33x10°?
1.000x 10™* 6.13x10° 1 8.59x 10?2 6.12x10° 1 9.32x10°?
1.000x 1073 6.10<10° 1 8.59x 10?2 6.10< 1071 9.29x 102
1.000< 102 5.88x 10! 8.50x 10?2 5.87x10°* 8.97x10°?
1.000< 10! 2.58x10°1 4.07x10°2 2.59x 10! 4.07x10°2

TABLE VI. Fundamental frequencies for ttzg field in RNdS, withq=0.5 andm= 1.0, using numerical
and semianalytical methods.

g=0.5 Numerical Semianalytical
4 A Re(wg) —Im(wp) Re(wg) —Im(wp)
1 1.000< 1073 2.71x10°1 9.51x 1072 2.69x10°1 9.55x 102
1.000x 10~ 4 2.71x10°1 9.50x 10?2 2.68x10°1 9.55x 10?2
1.000x 1073 2.70< 1071 9.47x10°? 2.67x10°1 9.51x 107t
1.000x 1072 2.60<10°1 9.11x10°? 2.57x10°1 9.15x 102
1.000<10°* 1.16x10°* 4.08< 102 1.16x10°* 4.08x<10 2
2 1.000<10°° 4.94x10°1 9.71x 102 4.93x10° ! 9.72x10°2
1.000< 10 * 4.94x 1071 9.71x 1072 4.93x10° ! 9.72x107°2
1.000< 1073 4921071 9.67x10°? 491107t 9.68x 102
1.000x 1072 4.73x10°! 9.30x10°? 4.73x10°! 9.31x10°?
1.000x 1071 2.09x 1071 4.16x10°? 2.09x 1071 4.10<10°?
3 1.000< 1075 7.05x10°1 8.95x 102 7.05x10° 1 9.77x10°?
1.000x 10™* 7.05x10°1 8.94x 102 7.05x10° 1 9.76x10°?
1.000x 1073 7.02x10°1 8.86x 102 7.02x10°1 9.73x10°?
1.000x< 1072 6.77x10° 1 8.50x 10?2 6.76x10°* 9.35x 102
1.000< 10! 2.98x10°1 4.10x 102 2.98x10°1! 4.10< 102

TABLE VII. Fundamental frequencies for tt# field in RNdS, withq=0.5 andm= 1.0, using numeri-
cal and semianalytical methods.

g=0.5 Numerical Semianalytical
4 A Re(wg) —Im(wp) Re(wg) —Im(wp)
2 1.000< 107 % 3.82x10°1 8.96x 1072 3.81x10°* 8.99x 102
1.000x 10~ 4 3.82x10°1 8.95x 10?2 3.81x10°1 8.97x10°?
1.000x 1073 3.80x10°1 8.93x10°? 3.79x 1071 8.94x 1072
1.000x 1072 3.66x10°1 8.64x 102 3.65x10°1 8.66x 102
1.000< 1071 1.60x10°* 4.13x10°2 1.60x10°* 4.05x 102
3 1.000x10°° 6.13x10°* 8.56x 10?2 6.12x10°* 9.33x10°?
1.000<10°* 6.13x10°* 8.56x 10?2 6.12x10°* 9.32x10°?
1.000< 103 6.10x10°* 8.56x 10?2 6.10x10°* 9.29x 102
1.000x 1072 5.88<10° 1 8.49x 102 5.87x10° 1 8.97x10°?
1.000x 1071 2.58x 101 4.07x10°? 2.58x 101 4.07x10°?
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FIG. 14. Tails of theZ; (¢=1) andZ; (¢=2) fields in RNdS. FIG. 16. Scalar{=1) andz; andz; fields (¢ =2), approach-
The parameters for the geometry ake=10 * and m=1.0. The ing the asymptotically flat limit in RNdS. The parameters for the
results are similar for the other fields considered. geometry areq=0.5 andm=1.0. The results are similar for the

. . ) other fields considered.
ues, this power-law tail appears quite clearly between the

guasinormal zone and the exponential tail. ] ] o .

With such data, we can speak of three different regimes ifunctions have an important qualitative change, with the ap-
the field dynamics when one approaches the asymptoticallpearance of an exponential tail. This tail dominates the decay
flat limit: first, a quasinormal regime, with its characteristic for large time. Near the asymptotically flat limi(<1), we
damped oscillations, followed by an intermediate regime forseée an intermediary phase between the quasinormal modes
which the power-law tail is visible, and a late-time region for and the exponential tail—a region of power-law decay. When
which an exponential tail dominates. This qualitative pictureA =0, this region entirely dominates the late-time behavior.

is valid for all fields considered. Finally, for scalar fields wit =0 a constant decay mode
appears, and its value depends on ¢h€0x) initial condi-
VIl. CONCLUSIONS tion. Figure 6 reveals the appearance of the constant value

We have identified three regimes, according to the valué'{70 for larget, and7|ts dgpendence o (0x). The value of
of A for the decay of the scalar, electromagnetic, and gravi®o falls below 10 * for 4,(0x)=0. These results are com-
tational (or Z;, in RNdS perturbations. Near the extreme patible with the analytical predictions pf4]. The analytical
limit (high A), e have analytic expressions for the eﬁectivecharactenzatlon of these regions and the corresponding criti-

potentials and the quasinormal frequencies. The decay is ef@ values ofA are crucial to a better understanding of these
tirely dominated by the quasinormal modes in[31]), that  dualitatively different regimes.

is, oscillatory decay characterized by a nonvanishing real A Very important aspect of the field dynamics in the
part of the quasinormal frequency. RNdS geometries is that the influence of the electric charge

In an intermediary parameter regidlower A), the wave on.the field behgvior, in general, was shown to be quite re-
stricted. In particular, we observed no dependence of the
exponential tail coefficients with. This contrasts with pre-
vious results obtained in the anti—de Sitter cf8f where
the charge plays a fundamental role in the tails. A deep un-
derstanding of this fact depends on new analytical
asymptotic results along the lines of the ones obtained in
[14]. These points are now under investigation. Also, since
the presence of a charge implies an internal structure similar
to that of a rotating black hole, our results might be inter-
preted as a broader universality of the frequencies here ob-
tained. This question deserves further study.
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