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We present an exhaustive analysis of scalar, electromagnetic, and gravitational perturbations in the back-
ground of Schwarzchild–de Sitter and Reissner–Nordstro¨m–de Sitter spacetimes. The field propagation is
considered by means of a semianalytical~WKB! approach and two numerical schemes: the characteristic and
general initial value integrations. The results are compared near the extreme cosmological constant regime,
where analytical results are presented. A unifying picture is established for the dynamics of different spin
fields.
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I. INTRODUCTION

Wave propagation around nontrivial solutions of Einste
equations, black holes in particular, is an active field of
search~see@1–3# and references therein!. The perspective of
gravitational wave detection in the near future and the g
development of numerical general relativity have increa
even further the activity on this field. Gravitational wav
should be especially strong when emitted by black holes.
study of the propagation of perturbations around them
hence, essential to provide templates for gravitational w
identification. On the other hand, recent astrophysical ob
vations indicate that the universe is undergoing an acce
ated expansion phase, suggesting the existence of a s
positive cosmological constant and that de Sitter~dS! geom-
etry provides a good description of very large scales of
universe@4#. We notice also that string theory has recen
motivated many works on asymptotically anti–de Sit
spacetimes~see, for instance,@5–8#!.

In this work, we perform an exhaustive investigation
scalar, electromagnetic, and gravitational perturbations in
background of Schwarzchild–de Sitter~SdS! and Reissner–
Nordström–de Sitter~RNdS! spacetimes. Contrasting wit
the noncharged case, in the RNdS one the electromag
and gravitational perturbations are necessarily coupled.
scan the full range of the cosmological constant, from
asymptotic flat case (L50) up to the critical value ofL
which characterizes, for the noncharged case, the Naria
lution @9#. Two different numerical methods and a high
order WKB analysis are used. The results are compared
the extremeL regime, where analytical results can be o
tained.

We recall that for any perturbation in the spacetimes
consider that, after the initial transient phase, there are
main contributions to the resulting asymptotic wave@10,11#:
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initially the so-called quasinormal modes, which are su
pressed at later time by the tails. The first can be underst
as candidates for normal modes which, however, decay~their
energy eigenvalues becomes complex!, as in the ingenious
mechanism first described by Gamow in the context
nuclear physics@12#. After the initial transient phase, th
properties of the resulting waves are more related to
background spacetime rather than to the source itself.

It is well known that for asymptotically flat background
the tails decay according to a power law, whereas in a sp
with a positive cosmological constant the decay is expon
tial. Curiously, ,50 modes for scalar fields in dS spac
times, contrasting with the asymptotic flat cases, expon
tially approach a nonvanishing asymptotic value@13,14#. We
detected, by using a noncharacteristic numerical integra
scheme, a dependence of this asymptotic value on the in
velocities. In particular, it vanishes for static initial cond
tions. Our results are in perfect agreement with the analyt
predictions of@14#.

The semianalytical analyses of this work were perform
by using the higher order WKB method proposed by Sch
and Will @15#, and improved by Iyer and Will@16,17#. It
provides a very accurate and systematic way to study b
hole quasinormal modes. We apply it to the study of vario
perturbation fields in the nonasymptotically flat dS geome
Quasinormal modes are also calculated according to this
proximation, and the results are compared to the numer
ones whenever appropriate, providing a quite complete
ture of the question of quasinormal perturbations for
black holes.

Concerning the charged case, we analyze in detail
wave propagation of the massless scalar field and cou
electromagnetic and gravitational fields in the RNdS spa
time. An important difference concerning the dynamics
the electromagnetic and gravitational fields is that there
no pure modes, since both are interrelated. We will show
the direct picture of the evolution presents us with perf
agreement of quasinormal frequencies with those obtai
by using the approximation method suggested in@15,16#.
One important point assessed is the dependence of the fi
decay on the electric charge of the black hole, including
©2004 The American Physical Society13-1
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asymptotically flat limit, for which we expected to find trac
of a power-law tail appearing between the quasinorm
modes and the exponential tail.

Two very recent works overlap our analysis presen
here. A similar WKB approach, presented in@18#, was used
very recently by Zhidenko@19# to study SdS black holes
giving results in agreement with ours. Yoshida and Futam
@20# used a continued fraction numerical code to calcul
quasinormal mode frequencies, with special emphasis
high order modes. Our results are also compatible. Fina
we notice that solutions of the wave equation in a nontriv
background have also been used to infer intrinsic proper
of the spacetime@21#.

The paper is organized as follows. Sec. II provides th
retical considerations and reviews some well-known res
that were useful to our work; Sec. III briefly explains th
numerical and semianalytical methods employed, follow
by Sec. IV, which presents, in detail, our results on fie
dynamics for near extreme SdS and RNdS geometries.
tion V deals with the so-called intermediary region, whe
the geometries are not extreme. Data on the SdS limit an
exponential tails are also presented. Section VI deals with
near asymptotically flat region, and Sec. VII presents
conclusions.

II. METRIC, FIELDS, AND EFFECTIVE POTENTIALS

The metric describing a charged, asymptotically de Si
spherical black hole, written in spherical coordinates,
given by

ds252h~r !dt21h~r !21dr21r 2~du21sin2udf2!, ~1!

where the functionh(r ) is

h~r !512
2m

r
1

q2

r 2
2

Lr 2

3
. ~2!

The integration constantsm and q are the black hole mas
and electric charge, respectively. If the cosmological c
stant is positive, we have the Reissner–Nordstro¨m–de Sitter
metric. In this case,L is usually written asL53/a2, where
the constanta is the ‘‘cosmological radius.’’

The spacetime causal structure depends strongly on
zeros ofh(r ). Depending on the parametersm, q, anda, the
function h(r ) may have three, two, or even no real positi
zeros. For the RNdS cases we are interested in,h(r ) has
three simple real, positive roots (r c , r 1 , andr 2), and a real
and negative rootr n52(r 21r 11r c). The horizonsr 2 ,
r 1 , and r c , with r 2,r 1,r c , are denoted Cauchy, even
and cosmological horizons, respectively.

For the SdS case (q50), and assumingm.0 and 0
,9m2L,1, the functionh(r ) has two positive zerosr 1 and
r c and a negative zeror n52(r 11r c). This is the SdS ge-
ometry in which we are interested. The horizonsr 1 andr c ,
with r 1,r c , are denoted the event and cosmological ho
zons, respectively. In this case, the constantsm and a are
related to the roots by
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21r 1r c , ~3!

2ma25r 1r c~r 11r c!. ~4!

If 9m2L51, the zerosr 1 and r c degenerate into a doubl
root. This is the extreme SdS black hole. Ifm2L.1, there
are no real positive zeros, and the metric~1! does not de-
scribe a black hole.

In both the SdS and RNdS cases, we shall study the
turbation fields in the exterior region, defined as

T15$~ t,r ,u,f!,r 1,r ,r c%. ~5!

In this regionT1 , we define a ‘‘tortoise coordinate’’x(r ) in
the usual way,

x~r !52
1

2kc
ln~r c2r !1

1

2k1
ln~r 2r 1!2

1

2k2
ln~r 2r 2!

1
1

2kn
ln~r 2r n! ~6!

with

k i5
1

2 Udh~r !

dr U
r 5r i

. ~7!

The constantsk2 , k1 , andkc are the surface gravities as
sociated with the Cauchy, event, and cosmological horizo
respectively. For the SdS case, the term associated with
Cauchy horizon is absent.

Consider now a scalar perturbation fieldF obeying the
massless Klein-Gordon equation

hF50. ~8!

The usual separation of variables in terms of a radial fi
and a spherical harmonic Y,,m(u,w),

F5(
,m

1

r
c,

sc~ t,r !Y,~u,f!, ~9!

leads to Schro¨dinger-type equations in the tortoise coordina
for each value of,,

2
]2c,

sc

]t2
1

]2c,
sc

]x2
5Vsc~x!c, , ~10!

where the effective potentialVsc is given by

Vsc~r !5h~r !F ,~,11!

r 2
1

2m

r 3
2

2q2

r 4
2

2

a2G . ~11!

The situation for higher spin perturbations is quite diffe
ent. In the SdS geometry, in contrast to the case of an e
trically charged black hole, it is possible to have pure el
tromagnetic and gravitational perturbations. For both ca
we have Schro¨dinger-type effective equations. For the firs
the effective potential is given by@22#
3-2
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Vel~r !5h~r !
,~,11!

r 2
, ~12!

with ,>1. The gravitational perturbation theory for the e
terior Schwarzschild–de Sitter geometry has been develo
in @2,5#. The potentials for the axial and polar modes a
respectively,

Vax~r !5h~r !F ,~,11!

r 2
2

6m

r 3 G , ~13!

Vpo~r !5
2h~r !

r 3~3m1cr !2
@9m313c2mr2

1c2~11c!r 313m2~3cr2Lr 3!#, ~14!

with 2c5(,21)(,12) and ,>2. For perturbations with
,.0, we can show explicitly that all the effective potentia
V(x)[V„r (x)… are positive definite. For scalar perturbatio
with ,50, however, the effective potential has one ze
point x0 and it is negative forx.x0 .

The perturbation theory for the RNdS geometry has b
developed in@23#. There are neither purely electromagne
nor gravitational modes. Indeed, we have four mixed el
tromagnetic and gravitational fields, two of them called po
fields Z1

1 andZ2
1 ~since they impart no rotation to the blac

hole! and two named axial fieldsZ1
2 andZ2

2 . It is possible to
express their dynamics in four decoupled wave equatio
two for the axial fields and two for the polar fields. The
deduction can be found in@23# and references therein. Her
we just show the expressions, which will be useful throug
out our work.

The axial perturbationsZ1,2
2 are governed by wave equa

tions which have the same form as Eq.~10!, but with effec-
tive potentials given by

V 1
25h~r !F ,~,11!

r 2
1

4q2

r 2
2

3m2A9m218cq2

r 3 G ,

~15!

V 2
25h~r !F ,~,11!

r 2
1

4q2

r 2
2

3m1A9m218cq2

r 3 G ,

~16!

respectively, with 2c5(,21)(,12).
The polar perturbationsZ1,2

1 are subjected to rather cum
bersome potentials, as we can see below:

V 1
15

h~r !

r 3
FU1

1

2
~p12p2!WG , ~17!

V 2
15

h~r !

r 3
FU2

1

2
~p12p2!WG , ~18!
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p153m1A9m218cq2, ~19!

p253m2A9m218cq2, ~20!

W5
rh~r !

v̄2
~2cr13m!1

1

v̄
S cr1m1

2

3
Lr 3D ,

~21!

U5~2cr13m!W1S v̄2cr2m2
2

3
Lr 3D

2
2cr2h~r !

v̄
, ~22!

v̄5cr13m2
2q2

r
. ~23!

In the limit q→0, the RNdS potentialsV 2
6 go into the SdS

polar and axial potentialsV6. Therefore, the minimum, for
these fields is,52, while theV 1

6 fields admit,51 as their
minimum , value, since they become electromagnetic p
turbations in the limitq→0.

III. NUMERICAL AND SEMIANALYTICAL APPROACHES

A. Characteristic integration

In @24# a simple but at the same time very efficient way
dealing with two-dimensional d’Alembertians has been
up. Along the general lines of the pioneering work@25#, the
authors introduced light-cone variablesu5t2x and v5t
1x, in terms of which all the wave equations introduc
have the same form. We callV the generic effective potentia
andc, the generic field, and the equations can be written
terms of the null coordinates, as

24
]2

]u]v
c,~u,v !5V„r ~u,v !…c,~u,v !. ~24!

In the characteristic initial value problem, initial data a
specified on the two null surfacesu5u0 and v5v0 . Since
the basic aspects of the field decay are independent of
initial conditions~this fact is confirmed by our simulations!,
we use

c,~u5u0 ,v !5expF2
~v2vc!

2

2s2 G , ~25!

c,~u,v5v0!5expF2
~v02vc!

2

2s2 G . ~26!

Due to the size of our lattices, the latter constant can be s
zero for any practical purpose.

Since we do not have analytic solutions to the tim
dependent wave equation with the effective potentials in
duced, one approach is to discretize Eq.~24! and then imple-
ment a finite differencing scheme to solve it numerical
One possible discretization, used, for example, in@8,13,14#,
is
3-3
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c,~N!5c,~W!1c,~E!2c,~S!2D2V~S!
c,~W!1c,~E!

8

1O~D4!, ~27!

where we have used the definitions for the pointsN5(u
1D,v1D), W5(u1D,v), E5(u,v1D), and S5(u,v).
With the use of expression~27!, the basic algorithm will
cover the region of interest in theu-v plane, using the value
of the field at three points in order to compute it at a four

After the integration is completed, the valuesc,(umax,v)
and c,(u,vmax) are extracted, whereumax (vmax) is the
maximum value ofu (v) on the numerical grid. Taking suf
ficiently largeumax andvmax, we have good approximation
for the wave function at the event and cosmological ho
zons.

B. Noncharacteristic integration

It is not difficult to set up a numeric algorithm to solv
Eq. ~10! with Cauchy data specified on at constant surface
We used a fourth order inx and second order int scheme
~see, for instance,@26# for an application of this algorithm to
seismic analysis!. The second spatial derivative at a poi
(t,x), up to fourth order, is given by

c,9~ t,x!5
1

12Dx2
@c,~ t,x12Dx!216c,~ t,x1Dx!

130c,~ t,x!216c,~ t,x2Dx!1c,~ t,x22Dx!#,

~28!

while the second time derivative up to second order is

c̈,~ t,x!5
c,~ t1Dt,x!22c,~ t,x!1c,~ t2Dt,x!

Dt2
. ~29!

Given c,(t5t0 ,x) and c,5(t5t02Dt,x) @or ċ,(t
5t0 ,x)], we can use the discretization of Eqs.~28! and~29!
to solve Eq.~10! and calculatec,(t5t01Dt,x). This is the
basic algorithm. At each interaction, one can control the e
by using the invariant integral~the wave energy! associated
with Eq. ~10!

E5
1

2E @@c,8~ t,x!#21@ċ,~ t,x!#21V~x!c,~ t,x!2#dx.

~30!

We make an exhaustive analysis of the asymptotic beh
ior of the solutions of Eq.~10! with initial conditions of the
form

c,~0,x!5expF2
~x2x0!2

2s0
2 G , ~31!

ċ,~0,x!5A expF2
~x2x1!2

2s1
2 G . ~32!
10401
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The results do not depend on the details of the initial con
tions. They are compatible with the ones obtained by
usual characteristic integration, with the only, and significa
exception of the,50 scalar mode. As we will see, it
asymptotic value depends strongly on the initial velocit
ċ,(0,x), a behavior already advanced in the work@14#.

C. WKB analysis

Considering the Laplace transform of Eq.~10!, one gets
the ordinary differential equation

d2c,~x!

dx2
2@s21V~x!#c,~x!50. ~33!

One finds that there is a discrete set of possible values fs

such that the functionĉ, , the Laplace-transformed field, sa
isfies both boundary conditions,

lim
x→2`

ĉ,esx51, ~34!

lim
x→1`

ĉ,e2sx51. ~35!

By making the formal replacements5 iv, we have the usua
quasinormal mode boundary conditions. The frequenciev
~or s) are called quasinormal frequencies.

The semianalytic approach used in this work@15,16# is a
very efficient algorithm to calculate the quasinormal freque
cies, which have been applied in a variety of situations@17#.
With this method, the quasinormal modes are given by

vn
25~V01P!2 i S n1

1

2D ~22V 0
(2)!1/2~11Q! ~36!

where the quantitiesP andQ are determined using

P5
1

8 FV 0
(4)

V 0
(2)G S 1

4
1a2D 2

1

288FV 0
(3)

V 0
(2)G 2

~7160a2!, ~37!

Q5
1

22V 0
(2) H 5

6912FV 0
(3)

V 0
(2)G 4

~771188a2!

2
1

384FV 0
(3)2V 0

(4)

V 0
(2) G ~511100a2!

1
1

2304FV 0
(4)

V 0
(2)G 2

~67168a2!1
1

288FV 0
(3)V 0

(5)

V 0
(2)2 G

3~19128a2!2
1

288FV 0
(6)

V 0
(2)G ~514a2!J . ~38!
3-4
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In Eqs. ~36!–~38!, a5n11/2 and the superscript~i! de-
notes differentiation, with respect tox, of the potentialV(x).
The potential and its derivatives are then calculated at
point x0 , whereV(x) is an extremum. The integern labels
the modes

n5H 0,1,2, . . . , Re~vn!.0,

21,22,23, . . . , Re~vn!,0.
~39!

IV. NEAR EXTREME LIMIT

A. Schwarzschild–de Sitter black hole

To characterize the near extreme limit of th
Schwarzschild–de Sitter geometry, it is convenient to de
the dimensionless parameterd̄:

d̄5A129m2L. ~40!

The limit 0, d̄!1 is the near extreme limit, where the h
rizons are distinct, but very close. In this regime, analyti
expressions for the frequencies have been calculated@27,28#.
For the scalar and electromagnetic fields, the quasinor
frequencies are

vn5FL3 23m2L2G1/2H F,~,11!2
1

4G1/2

2 i S n1
1

2D J .

~41!

For the axial and polar gravitational fields, the frequenc
are given by

vn5FL3 23m2L2G1/2H F ~,12!~,21!2
1

4G1/2

2 i S n1
1

2D J .

~42!

They can be compared with the numerical and semiana
methods presented in the previous section.

Direct calculation of the wave functions confirms that,
the near extreme limit, their dynamics is simple, with t
late-time decay of the fields being dominated by quasinor
modes. All the types of perturbation tend to coincide near
extreme limit. In addition, as we approach the extreme lim
the oscillation period increases and the exponential de
rate decreases. These conclusions, illustrated in Fig. 1 f,
51,2, are consistent with the ones presented in@27,28#.

By using a nonlinear fitting based on ax2 analysis, it is
possible to estimate the real and imaginary parts of thn
50 quasinormal mode. These results can be compared
the analytical expressions in the near extreme cases. In
2, we analyze the dependence of the frequencies on,. The
accordance between analytic and numerical data is extrem
good.

B. Reissner–Nordström–de Sitter black hole

For the RNdS case, the near extreme limit correspond
the situation where the event and cosmological horizons
very close to each other. It is natural to define the dimens
less parameterd as
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d5
r c2r 1

r 1
, ~43!

where 0,d!1. In this limit the dynamics can be analyt
cally characterized, as has been analyzed in@27#. More gen-
eral settings, including RNdS geometries, were explored
@28#.

The function h(x)[h„r (x)… can be analytically calcu-
lated @27,28#, with the result

h~x!5
~r c2r 1!k1

2 cosh2~k1x!
1O~d3!. ~44!

We have five different fields at hand: the scalar field (Zsc),
two axial fields (Z1

2 ,Z2
2), and two polar fields (Z1

1 ,Z2
1).

For each one, we have a different potential. In the near
treme limit, we have

FIG. 1. Decay of the scalar and electromagnetic fields with,
51, and of the scalar, axial, and polar gravitational fields, with,
52, with the SdS geometry approaching the near extreme limit.

parameters for the geometry arem51.0 andd̄50.01,0.1,0.3.

FIG. 2. Curve of Re(v0)2 with ,(,11), for the scalar, electro-
magnetic, and gravitational fields, in the near extreme limit. T
dots are the numerical results and the solid lines represent the

lytical results. The parameters for the geometry arem51.0 andd̄
50.01.
3-5
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V~x!5V~r 1!h~x!1O~d!5
V0

cosh2~k1x!
1O~d!.

~45!

The constantV0 in the scalar case is denoted byV 0
sc , in the

axial cases by$V 0
12 ,V 0

22%, and in the polar cases b
$V 0

11 ,V 0
21%. The foregoing expression is a Po¨schl-Teller po-

tential @29#.
For the scalar field,V 0

sc has been calculated in@28# and is
given by

V 0
sc5

,~,11!~r c2r 1!k1

2r 1
2

. ~46!

We proceed to the analysis of the coupled electromagn
and gravitational fields. We take the analytical expressi
a
.

ric
re

10401
tic
s

for all potentialsV 1,2
6 and we go to the near extreme limi

For the two axial potentials, we have

V 0
125

~r c2r 1!k1

2r 1
4

@,~,11!r 1
2 14q22r 1S1#, ~47!

V 0
225

~r c2r 1!k1

2r 1
4

@,~,11!r 1
2 14q22r 1S2#,

~48!

where

S153m2A9m214~,12!~,21!q2, ~49!

S253m1A9m214~,12!~,21!q2. ~50!

We can now turn to the two polar potentials. The co
stantsV 0

11 andV 0
21 are given by
V 0
115

k1~r c2r 1!

2r 1
4 F ~2cr1

2 13mr11r 1
A9m218cq2!~cr11m12Lr 1

3 /3!

cr113m22q2/r 1

1CG , ~51!

V 0
215

k1~r c2r 1!

2r 1
4 F ~2cr1

2 13mr12r 1
A9m218cq2!~cr11m12Lr 1

3 /3!

cr113m22q2/r 1

1CG , ~52!
n
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with C52mr122q222Lr 1
4 /3 and 2c5(,12)(,21).

The quasinormal modes associated with the Po¨schl-Teller
potential have been extensively studied@30,31#. The frequen-
ciesvn are given by

FIG. 3. Near extreme fundamental frequencies for different v
ues of the chargeq, for the lower multipole mode of the scalar field
Analytical values are represented by straight lines, and nume
values appear as dots. The parameters for the geometry am
51.0 andd51023.
vn

k1

5AV0

k1
2

2
1

4
2 i S n1

1

2
D , ~53!

with nP$0,1, . . .% labeling the modes. Using expressio
~53! and the expression forV0 , the frequencies can be easi
calculated.

We can also use the numerical method to analyze the fi
decay in the near extreme limit. Using a nonlinear fitti
based onx2 analysis for the wave functions, we can estima
the quasinormal frequencies. These results can be comp
with the analytical expressions in the near extreme ca
The accordance between both sets of results is extrem
good. We illustrate this point in Figs. 3–5.

Direct calculation of the wave functions confirms that,
the near extreme limit, the dynamics of the fields is simp
with the late-time decay being completely dominated by q
sinormal modes.

V. INTERMEDIARY REGION IN PARAMETER SPACE

A. Schwarzschild–de Sitter black hole

1. Scalar field withøÄ0

Only scalar perturbations can have zero total angular m
mentum. Solutions of Eq.~10! with ,50 lead to a constan
tail, as already shown in@13,14#. This is confirmed in Fig. 6.

l-
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3-6



alu
r-

e

di

e
-
b
od
ttl

es
of
tial

nor-
ions

ay
n-
en-
for

the
lytic
ood,

l-
te

a
.

a
.

-

en-
-

uous

FIELD PROPAGATION IN de SITTER BLACK HOLES PHYSICAL REVIEW D69, 104013 ~2004!
The novelty here is the dependence of the asymptotic v
on theċ,(0,x) initial condition. Figure 6 reveals the appea
ance of the constant valuef0 for large t and its dependenc
on ċ,(0,x). Note thatf0 falls below 1027 for ċ,(0,x)50.
These results are in accordance with the analytical pre
tions of @14#, which give

c~`,r !5
r

r c
2
E

0

r c
ċ~0,s!s

ds

h8~s!
. ~54!

2. Fields with øÌ0

We can have scalar and vector fields with angular mom
tum ,51, and with,.1, it is possible to introduce gravita
tional fields also. Their behavior is described in general
three phases. The first corresponds to the quasinormal m
generated from the presence of the black hole itself. A li

FIG. 4. Near extreme fundamental frequencies for different v
ues of the chargeq, for the lower multipole mode of the polar fields
On the left are the data forZ1

1 and on the right, forZ2
1 . The

parameters for the geometry arem51.0 andd51023.

FIG. 5. Near extreme fundamental frequencies for different v
ues of the chargeq, for the lower multipole mode of the axial fields
The data forZ1

2 appear on the left, and those forZ2
2 on the right.

The parameters for the geometry arem51.0 andd51023.
10401
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later there is a region of power-law decay, which continu
indefinitely in an asymptotically flat space. In the presence
a positive cosmological constant, however, an exponen
decay takes over in the latest period.

As the separation of the horizons increases, the quasi
mal frequencies deviate from those predicted by express
~41! and ~42!. In Fig. 7, this is illustrated for,51,2. Some
qualitatively different effects show up when we turn aw
from the near extreme limit. For a small cosmological co
stant the asymptotic behavior is dominated by an expon
tially decaying mode rather than by a quasinormal mode,
all perturbations considered.

It is interesting to compare the values obtained for
fundamental modes using the numerical and semiana
methods. We find that the agreement between them is g
for the whole range ofL. The difference is smaller for the
first values of,. This is expected, since the numerical ca
culations work better in this region. In Table I, we illustra

l-

l-

FIG. 6. Asymptotic solutionsf(x,t) obtained by noncharacter
istic numerical integration with,50, L51024, andm51.0. The
curves correspond to different values ofA in the initial condition
~32!.

FIG. 7. Graphs of the real and imaginary parts of the fundam
tal frequencies (n50) with k1 . The dotted lines are the near ex
treme results, the dots are the numerical results, and the contin
curves are the semianalytic results. In the graphs,m51.0.
3-7
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TABLE I. Fundamental frequencies for the scalar field in SdS, obtained using numerical and sem
lytical methods. In this table,m51.0.

q50 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

1 1.00031025 2.93031021 9.75331021 2.91131021 9.78031022

1.00031024 2.92831021 9.76431022 2.91031021 9.79731022

1.00031023 2.91431021 9.72631022 2.89631021 9.77131022

1.00031022 2.77031021 9.45531022 2.75331021 9.49031022

1.00031021 8.15931022 3.12331022 8.14431022 3.13731022

2 1.00031025 4.84031021 9.65331022 4.83231021 9.68031022

1.00031024 4.83331021 8.94831022 4.83031021 9.67731022

1.00031023 4.81631021 8.99831022 4.80931021 9.64331022

1.00031022 4.59831021 8.88031022 4.59231021 9.29031022

1.00031021 1.46631021 3.06831022 1.46631021 3.07031022

3 1.00031025 6.76931021 8.66231022 6.75231021 9.65131022

1.00031024 6.75431021 8.65431022 6.74931021 9.64731022

1.00031023 6.73231021 8.66031022 6.72031021 9.61131022

1.00031022 6.43731022 9.20031022 6.42831022 9.23531022

1.00031021 2.09131022 3.05431022 2.09131022 3.05631022
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these observations with a few values ofL. It is important to
mention that quasinormal frequencies for the SdS black h
were already calculated in a recent paper@19#, by applying a
variation of the WKB method used here@18#. There are ear-
lier papers calculating quasinormal modes in this geome
for example,@32#.

The first highern modes cannot be obtained from th
numerical solution, but can be calculated by the semiana
cal method. As the cosmological constant decreases, the
and imaginary parts of the frequencies increase, up to
limit where the geometry is asymptotically flat. The behav
of the modes is illustrated in Fig. 8. The behavior of t
electromagnetic field is similar.

A x2 analysis of the data presented in Fig. 9 shows t
the massless scalar, electromagnetic, and gravitational pe

FIG. 8. Quasinormal modes of the scalar, axial, and polar gr
tational fields, for higher modes. The parameter for the curves
m51.0 andL51023.
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bations in SdS geometry behave as

c,
sc;e2kexp

sc t with t→`, ~55!

c,
el;e2kexp

el t with t→`, ~56!

c,
ax;e2kexp

ax t with t→`, ~57!

c,
po;e2kexp

po t with t→` ~58!

for t sufficiently large. At the event and the cosmologic
horizons,t is substituted, respectively, byv andu.

The numerical simulations developed in the present w
reveal an interesting transition between oscillatory mo

i-
re

FIG. 9. Exponential tails for the scalar and electromagne
fields with,51, and for the axial and polar gravitational field wit
,52. In the graphs,m51.0.
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and exponentially decaying modes. As shown in Fig. 10
the cosmological constant increases, the absolute value
2Im(v0) decreases.

Above a certain critical value ofL we do not observe the
exponential tail, since the coefficientkexp is larger than
2Im(v0) and thus the decaying quasinormal mode do
nates. But forL smaller than this critical value,2Im(v0)
turns out to be larger thankexp, and the exponential tai
dominates. Certainly, for a small enough cosmological c
stant, the exponential tail dominates in the various cases
sidered here.

Another aspect worth mentioning in the intermediate
gion is the dependence of the parameterskexp

sc , kexp
el , kexp

ax ,
andkexp

po on , andkc . The results suggest that thekexp are at
least second differentiable functions ofkc . Therefore, close
to kc50, we approximate

kexp
sc ~kc!',~kc1csckc

2!, ~59!

kexp
el ~kc!'kexp

ax ~kc!'kexp
po ~kc!'~,11!~kc1ce2gkc

2!.
~60!

Previous results are illustrated in Fig. 11.

B. Reissner–Nordström–de Sitter black hole

We assess here the behavior of the fields in RNdS exte
geometries that are not near extreme, nor close to the asy
totically flat limit. Direct numerical simulations and sem
analytical~WKB! methods were largely employed to chara
terize the fields in this region.

For scalar perturbations with,50, the effective potentia
is not positive definite. As already shown in@13,14#, solu-
tions of Eq. ~10! with ,50 lead to a constant tail. It wa
observed that in the SdS geometry there is a dependen
the asymptotic value on theċ,(0,x) initial condition, in the
context of a Cauchy type initial value problem. We ha

FIG. 10. Approach to constant2Im(v0) andkexp, for the sca-
lar, electromagnetic, and gravitational fields, in the SdS geome
Above a certain critical value ofL ~roughly 1.731022,
4.031023, and 1.231023, respectively, for the parameters take
shown in the graphs!, a tail is not observed. For all curves, the ma
is set tom51.0.
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checked that the introduction of electric charge does not a
this picture.

If ,.0, we introduce theZ1
6 fields, and for,.1 theZ2

6

fields can also be analyzed. The first point studied is
quasinormal phase. If the cosmological constant is h
enough, the decay is dominated by quasinormal modes, e
when they no longer are accurately predicted by the exp
sions~53!. This scenario, illustrated in Fig. 12, is valid for a
fields considered, with any charge smaller than its criti
value.

We have observed that the influence of the electric cha
is mild, although not trivial. The range of variation of th
quasinormal modes with the charge is not very large.

y.
FIG. 11. Dependence ofkexp on kc and,, in the SdS geometry.

The symbols indicate the numerical values, and the solid lines
the appropriate fittings. For the left graph:kexp

sc 51.07731024

10.984kc13.545kc
2 , kexp

sc 521.8633102412.010kc12.608kc
2 ,

and kexp
sc 521.9593102413.028kc12.978kc

2 . For the center
graph: kexp

el 52.0823102411.988kc16.141kc
2 , kexp

el

52.7123102412.974kc18.284kc
2 , and kexp

el 53.73731024

13.984kc14.517kc
2 . For the right graph:kexp

ax 52.61631024

12.974kc19.895kc
2 and kexp

ax 54.4843102413.896kc118.92kc
2 .

In the graphs,m51.0.

FIG. 12. Quasinormal modes for RNdSZ1
2 andZ2

2 fields. The
parameters for the geometry areq50.5 andm51.0. We have used
,52. The results are similar for the other fields considered.
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illustrate this point in Fig. 13. It is interesting to compare t
values obtained for the fundamental modes using the num
cal and semianalytical methods. We find a very good ag
ment between these results. The difference is smaller for
first values of,. This is expected, since the numerical c
culations work better in this region. In Tables II–VII, w
illustrate these observations for a few values ofL andq.

For all fields considered, with a small enough cosmolo
cal constant, there is a qualitative change in the behavio
all fields considered. The late-time decay is dominated by
exponential tail. Therefore in the RNdS geometry we hav

c,
sc;e2kexp

sc t with t→`, ~61!

FIG. 13. Dependence ofZ1
1 field frequencies onq, for both the

real and imaginary parts, in RNdS. The results are qualitativ
similar for the other fields considered. The parameters arem51.0
andL51024.
10401
ri-
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Z1
6;e2kexp

16 t with t→`, ~62!

Z2
6;e2kexp

26 t with t→`, ~63!

for t sufficiently large. At the event and the cosmologic
horizonst is substituted byv andu, respectively. Figure 14
illustrates this point, which was noted in@13,14# for scalar
fields, and we have extended this consideration to coup
electromagnetic and gravitational fields. In the aforem
tioned figure we compare the exponential tails at the ev
horizon for exterior RNdS geometries.

An important point is that, unlike the quasinormal mo
frequencies, the exponential coefficients have shown no
pendence on the black hole’s electric charge, for all kinds
fields at hand. Close tokc50, our results are compatibl
with the expressions

kexp
sc ~kc!',~kc1csckc

2!, ~64!

kexp
i 6~kc!'~,11!~kc1ci 6kc

2!, i 51,2, ~65!

for any q lower than its extreme value. The dynamics of t
fields in de Sitter spacetimes is therefore very different fr
similar cases in anti–de Sitter geometries, in which for h
charge there is an abrupt change in the fields’ decay@8#. We
have also explicitly assessed the behavior of theZ1,2

6 fields as
q→0, comparing their quasinormal frequencies and ex
nential tails to those observed in the SdSZ6 fields. As an-
ticipated, we found that theZ2

1 field behaves like the SdSZ1

field and that theZ2
2 field behaves like the SdSZ2 field, if

the charge is small enough. We have observed that the R
fields Z2

6 tend smoothly to the SdS fieldsZ6.

ly
al and
TABLE II. Fundamental frequencies for the electromagnetic field in SdS, obtained using numeric
semianalytical methods. In this table,m51.0.

q50 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

1 1.00031025 2.48131021 9.22631022 2.45931021 9.31031022

1.00031024 2.48131021 9.22331022 2.45731021 9.30731022

1.00031023 2.47531021 9.17631022 2.44831021 9.27031022

1.00031022 2.37431021 8.83931022 2.35231021 8.89631022

1.00031021 8.03531022 3.02731022 8.02331022 3.03331022

2 1.00031025 4.57731021 8.98531022 4.57131021 9.50631022

1.00031024 4.57531021 8.99131022 4.56931021 9.50231022

1.00031023 4.55931021 9.43931022 4.55131021 9.46431022

1.00031022 4.37131021 8.94131022 4.36431021 9.07431022

1.00031021 1.45831021 3.03731022 1.45831021 3.03831022

3 1.00031025 6.57831021 8.36531022 6.56731021 9.56331022

1.00031024 6.57631021 8.34931022 6.56431021 9.55931022

1.00031023 6.54731021 8.39931022 6.53831021 9.52031022

1.00031022 6.27631022 8.85231022 6.26731021 9.12531022

1.00031021 2.08531022 3.03931023 2.08531021 3.04031022
3-10
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TABLE III. Fundamental frequencies for the axial and polar gravitational fields in SdS, obtained
numerical and semianalytical methods. In this table,m51.0.

q50 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

2 1.00031025 3.73831021 8.88331022 3.73131021 8.92131022

1.00031024 3.73731021 8.88031022 3.73031021 8.91831022

1.00031023 3.72131021 8.85031022 3.71531021 8.88831022

1.00031022 3.56631021 8.53831022 3.56031021 8.57231022

1.00031021 1.17931021 3.02031022 1.17931021 3.02331022

3 1.00031025 5.99931021 8.67731022 5.99231021 9.27231022

1.00031024 5.99631021 8.67631022 5.99031021 9.26931022

1.00031023 5.97231021 8.97131022 5.96631021 9.23431022

1.00031022 5.72531021 8.69531022 5.71831021 8.87431022

1.00031021 1.90031021 3.03031022 1.90031022 3.03231022

4 1.00031025 8.10631021 8.81031022 8.09131021 9.41731022

1.00031024 8.10231021 8.78131022 8.08731021 9.41331022

1.00031023 8.07031021 8.79931022 8.05531021 9.37631022

1.00031022 7.73331022 8.71431022 7.72031021 9.00031022

1.00031021 2.56431022 3.03431023 2.56331021 3.03631022
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VI. APPROACHING THE ASYMPTOTICALLY FLAT
GEOMETRY

Scalar fields in the SdS geometry near the asymptotic
flat limit were studied in@13,14#. In this case there is a clea
separation between the event and the cosmological horiz
such that

d5
r c2r 1

r 1
*50. ~66!
10401
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A new qualitative change occurs in this regime, namely
decaying phase with a power-law behavior. Such a ph
occurs between the quasinormal mode decay and the e
nential decay phases. The field cannot be simply descr
by a superposition of the various modes, which would imp
a domination of the power-law phase. This is illustrated
Fig. 15.

The situation for RNdS cases obeying Eq.~66! is pre-
sented in Fig. 16. As can be seen in this figure, we hav
perfect power-law tail developing for largev whenL50, as
expected. For the RNdS exterior geometry with lowL val-
TABLE IV. Fundamental frequencies for theZ1
2 field in RNdS, withq50.5 andm51.0, using numerical

and semianalytical methods.

q50.5 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

1 1.00031025 2.7131021 9.5131022 3.2831021 9.5331022

1.00031024 2.7131021 9.5031022 3.2831021 9.5331022

1.00031023 2.7031021 9.4731022 3.2731021 9.4931022

1.00031022 2.6031021 9.1131022 3.1531021 9.1431022

1.00031021 1.1631021 4.0831022 1.4031021 4.0831022

2 1.00031025 4.9431021 9.7231022 4.9431021 9.7131022

1.00031024 4.9331021 9.7231022 4.9431021 9.7131022

1.00031023 4.9131021 9.6831022 4.9231021 9.6731022

1.00031022 4.7331021 9.3131022 4.7331021 9.3031022

1.00031021 2.0931021 4.1031022 2.0931021 4.1631022

3 1.00031025 7.0531021 8.9531022 7.0531021 9.7731022

1.00031024 7.0531021 8.9431022 7.0531021 9.7631022

1.00031023 7.0231021 8.8731022 7.0231021 9.7331022

1.00031022 6.7731021 8.5031022 6.7631021 9.3531022

1.00031021 2.9831021 4.1031022 2.9831021 4.1031022
3-11
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TABLE V. Fundamental frequencies for theZ2
2 field in RNdS, withq50.5 andm51.0, using numerical

and semianalytical methods.

q50.5 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

2 1.00031025 3.8231021 8.9631022 3.8131021 8.9831022

1.00031024 3.8231021 8.9631022 3.8131021 8.9831022

1.00031023 3.8031021 8.9331022 3.8031021 8.9531022

1.00031022 3.6631021 8.6731022 3.6531021 8.6731022

1.00031021 1.6031021 4.0631022 1.6031021 4.0531022

3 1.00031025 6.1331021 8.5931022 6.1231021 9.3331022

1.00031024 6.1331021 8.5931022 6.1231021 9.3231022

1.00031023 6.1031021 8.5931022 6.1031021 9.2931022

1.00031022 5.8831021 8.5031022 5.8731021 8.9731022

1.00031021 2.5831021 4.0731022 2.5931021 4.0731022

TABLE VI. Fundamental frequencies for theZ1
1 field in RNdS, withq50.5 andm51.0, using numerical

and semianalytical methods.

q50.5 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

1 1.00031025 2.7131021 9.5131022 2.6931021 9.5531022

1.00031024 2.7131021 9.5031022 2.6831021 9.5531022

1.00031023 2.7031021 9.4731022 2.6731021 9.5131021

1.00031022 2.6031021 9.1131022 2.5731021 9.1531022

1.00031021 1.1631021 4.0831022 1.1631021 4.0831022

2 1.00031025 4.9431021 9.7131022 4.9331021 9.7231022

1.00031024 4.9431021 9.7131022 4.9331021 9.7231022

1.00031023 4.9231021 9.6731022 4.9131021 9.6831022

1.00031022 4.7331021 9.3031022 4.7331021 9.3131022

1.00031021 2.0931021 4.1631022 2.0931021 4.1031022

3 1.00031025 7.0531021 8.9531022 7.0531021 9.7731022

1.00031024 7.0531021 8.9431022 7.0531021 9.7631022

1.00031023 7.0231021 8.8631022 7.0231021 9.7331022

1.00031022 6.7731021 8.5031022 6.7631021 9.3531022

1.00031021 2.9831021 4.1031022 2.9831021 4.1031022

TABLE VII. Fundamental frequencies for theZ2
1 field in RNdS, withq50.5 andm51.0, using numeri-

cal and semianalytical methods.

q50.5 Numerical Semianalytical
, L Re(v0) 2Im(v0) Re(v0) 2Im(v0)

2 1.00031025 3.8231021 8.9631022 3.8131021 8.9931022

1.00031024 3.8231021 8.9531022 3.8131021 8.9731022

1.00031023 3.8031021 8.9331022 3.7931021 8.9431022

1.00031022 3.6631021 8.6431022 3.6531021 8.6631022

1.00031021 1.6031021 4.1331022 1.6031021 4.0531022

3 1.00031025 6.1331021 8.5631022 6.1231021 9.3331022

1.00031024 6.1331021 8.5631022 6.1231021 9.3231022

1.00031023 6.1031021 8.5631022 6.1031021 9.2931022

1.00031022 5.8831021 8.4931022 5.8731021 8.9731022

1.00031021 2.5831021 4.0731022 2.5831021 4.0731022
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ues, this power-law tail appears quite clearly between
quasinormal zone and the exponential tail.

With such data, we can speak of three different regime
the field dynamics when one approaches the asymptotic
flat limit: first, a quasinormal regime, with its characteris
damped oscillations, followed by an intermediate regime
which the power-law tail is visible, and a late-time region f
which an exponential tail dominates. This qualitative pictu
is valid for all fields considered.

VII. CONCLUSIONS

We have identified three regimes, according to the va
of L for the decay of the scalar, electromagnetic, and gra
tational ~or Z1,2

6 in RNdS! perturbations. Near the extrem
limit ~high L), we have analytic expressions for the effecti
potentials and the quasinormal frequencies. The decay is
tirely dominated by the quasinormal modes~as in@31#!, that
is, oscillatory decay characterized by a nonvanishing r
part of the quasinormal frequency.

In an intermediary parameter region~lower L), the wave

FIG. 14. Tails of theZ1
1 (,51) andZ2

1 (,52) fields in RNdS.
The parameters for the geometry areL51024 and m51.0. The
results are similar for the other fields considered.

FIG. 15. Approaching the asymptotically flat geometry in Sd
Straight lines in the log-log graphs indicate power-law decay. In
graphs,m51.0.
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functions have an important qualitative change, with the
pearance of an exponential tail. This tail dominates the de
for large time. Near the asymptotically flat limit (L!1), we
see an intermediary phase between the quasinormal m
and the exponential tail—a region of power-law decay. Wh
L50, this region entirely dominates the late-time behavi

Finally, for scalar fields with,50 a constant decay mod
appears, and its value depends on theċ,(0,x) initial condi-
tion. Figure 6 reveals the appearance of the constant v
f0 for large t, and its dependence onċ,(0,x). The value of
f0 falls below 1027 for ċ,(0,x)50. These results are com
patible with the analytical predictions of@14#. The analytical
characterization of these regions and the corresponding c
cal values ofL are crucial to a better understanding of the
qualitatively different regimes.

A very important aspect of the field dynamics in th
RNdS geometries is that the influence of the electric cha
on the field behavior, in general, was shown to be quite
stricted. In particular, we observed no dependence of
exponential tail coefficients withq. This contrasts with pre-
vious results obtained in the anti–de Sitter case@8#, where
the charge plays a fundamental role in the tails. A deep
derstanding of this fact depends on new analyti
asymptotic results along the lines of the ones obtained
@14#. These points are now under investigation. Also, sin
the presence of a charge implies an internal structure sim
to that of a rotating black hole, our results might be int
preted as a broader universality of the frequencies here
tained. This question deserves further study.
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FIG. 16. Scalar (,51) andZ1
1 andZ2

1 fields (,52), approach-
ing the asymptotically flat limit in RNdS. The parameters for t
geometry areq50.5 andm51.0. The results are similar for th
other fields considered.
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