263 research outputs found

    An Evaluation of Container Development Strategies in the Port of Taichung

    Get PDF
    AbstractThe objective of this study is to examine the container development strategies in the port of Taichung from the viewpoints of carriers, port authorities and shipping academics. The six most important strategic attributes from the all respondents perceptions are Enhancing the services of direct shipping with Mainland China, simplified customs procedures, simplified administrative procedures, developing service routes with Hong Kong and Mainland China, improving port information systems, and flexible rate to response market change. Based on a factor analysis, the findings reflect that price and incentive strategic dimension was the most import strategic dimension, followed by marketing and direct shipping with Mainland China as well as reorganization and information service strategic dimensions. In addition, the perceived implemented period for container development strategic attributes for the Taichung Port was also investigated in this study. Results indicated that four development strategies stood out as being short-term need to perform to all respondents were providing one-stop shopping services for carriers, flexible rate to response market change, enhancing employee training and knowledge, and strengthening port marketing and promotion. Theoretical and managerial implications of the research findings are discussed

    Terahertz nonlinear hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2

    Full text link
    The zero-magnetic-field nonlinear Hall effect (NLHE) refers to the second-order transverse current induced by an applied alternating electric field; it indicates the topological properties of inversion-symmetry-breaking crystals. Despite several studies on the NLHE induced by the Berry-curvature dipole in Weyl semimetals, the direct current conversion by rectification is limited to very low driving frequencies and cryogenic temperatures. The nonlinear photoresponse generated by the NLHE at room temperature can be useful for numerous applications in communication, sensing, and photodetection across a high bandwidth. In this study, observations of the second-order NLHE in type-II Dirac semimetal CoTe2 under time-reversal symmetry are reported. This is determined by the disorder-induced extrinsic contribution on the broken-inversion-symmetry surface and room-temperature terahertz rectification without the need for semiconductor junctions or bias voltage. It is shown that remarkable photoresponsivity over 0.1 A W−1, a response time of approximately 710 ns, and a mean noise equivalent power of 1 pW Hz−1/2 can be achieved at room temperature. The results open a new pathway for low-energy photon harvesting via nonlinear rectification induced by the NLHE in strongly spin–orbit-coupled and inversion-symmetry-breaking systems, promising a considerable impact in the field of infrared/terahertz photonicsPID2019–109525RB-I00, CEX2018-000805-M, EU’s H2020 NFFA-Europe (n. 654360), and NFFA-Europe-Pilot (10100741

    Risk factors for poor outcomes of children with acute acalculous cholecystitis

    Get PDF
    BACKGROUND: Acute acalculous cholecystitis (AAC) is generally considered to be a mild disease in children; however, if left untreated or treated without caution, AAC can lead to severe outcomes, such as death. The objectives of this study were to present the clinical features and identify the predictors of mortality in pediatric AAC. METHODS: Patients diagnosed with AAC between 2005 and 2012 were enrolled. AAC was defined by the presence of fever and an echo-proven thickened gallbladder wall exceeding 4 mm. A poor health outcome was defined as death. Further information related to the demographics, clinical manifestations, laboratory results, ultrasound findings, and pathogens present in the AAC patients was also collected. Predictors of mortality were identified by association analyses and confirmed by multivariate logistic regression. RESULTS: A total of 147 pediatric AAC patients (male/female = 1.01, mean age = 5.2 years) were included in this retrospective study. The most common clinical presentation was an elevated C-reactive protein level (84%) followed by hepatomegaly (80%) and anorexia (78%). AAC in children was associated with various diseases, including infectious diseases (70%), systemic diseases (13%), and malignancy (11%). Fourteen of the 147 (9.25%) patients died during the study period. The presences of thrombocytopenia, anemia, gallbladder sludge, hepatitis, and/or sepsis plus hepatitis were found to be the important predictors of AAC mortality. CONCLUSIONS: The factors associated with AAC mortality were anemia, thrombocytopenia, gallbladder sludge, hepatitis, and sepsis plus hepatitis. These predictors are likely to help clinicians identify patients who are at a high risk of poor prognoses and make appropriate clinical decisions

    The Role of Perfusion Computed Tomography in the Prediction of Cerebral Hyperperfusion Syndrome

    Get PDF
    Hyperperfusion syndrome (HPS) following carotid angioplasty with stenting (CAS) is associated with significant morbidity and mortality. At present, there are no reliable parameters to predict HPS. The aim of this study was to clarify whether perfusion computed tomography (CT) is a feasible and reliable tool in predicting HPS after CAS.We performed a retrospective case-control study of 54 patients (11 HPS patients and 43 non-HPS) with unilateral severe stenosis of the carotid artery who underwent CAS. We compared the prevalence of vascular risk factors and perfusion CT parameters including regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and time to peak (TTP) within seven days prior to CAS. Demographic information, risk factors for atherosclerosis, and perfusion CT parameters were evaluated by multivariable logistic regression analysis. The rCBV index was calculated as [(ipsilateral rCBV - contralateral rCBV)/contralateral rCBV], and indices of rCBF and TTP were similarly calculated. We found that eleven patients had HPS, including five with intracranial hemorrhages (ICHs) of whom three died. After a comparison with non-HPS control subjects, independent predictors of HPS included the severity of ipsilateral carotid artery stenosis, 3-hour mean systolic blood pressure (3 h SBP) after CAS, pre-stenting rCBV index >0.15 and TTP index >0.22.The combination of severe ipsilateral carotid stenosis, 3 h SBP after CAS, rCBV index and TTP index provides a potential screening tool for predicting HPS in patients with unilateral carotid stenosis receiving CAS. In addition, adequate management of post-stenting blood pressure is the most important treatable factor in preventing HPS in these high risk patients

    A Novel Tetrameric PilZ Domain Structure from Xanthomonads

    Get PDF
    PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat α3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined α2 and α4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed

    Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

    Get PDF
    microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore