335 research outputs found

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM

    Three-body recombination rates near a Feshbach resonance within a two-channel contact interaction model

    Full text link
    We calculate the three-body recombination rate into a shallow dimer in a gas of cold bosonic atoms near a Feshbach resonance using a two-channel contact interaction model. The two-channel model naturally describes the variation of the scattering length through the Feshbach resonance and has a finite effective range. We confront the theory with the available experimental data and show that the two-channel model is able to quantitatively describe the existing data. The finite effective range leads to a reduction of the scaling factor between the recombination minima from the universal value of 22.7. The reduction is larger for larger effective ranges or, correspondingly, for narrower Feshbach resonances.Comment: 9 pages, 7 figure

    Persistent currents in a Bose-Einstein condensate in the presence of disorder

    Full text link
    We examine bosonic atoms that are confined in a toroidal, quasi-one-dimensional trap, subjected to a random potential. The resulting inhomogeneous atomic density is smoothened for sufficiently strong, repulsive interatomic interactions. Statistical analysis of our simulations show that the gas supports persistent currents, which become more fragile due to the disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT

    Unstable particles in matter at a finite temperature: the rho and omega mesons

    Full text link
    Unstable particles (such as the vector mesons) have an important role to play in low mass dilepton production resulting from heavy ion collisions and this has been a subject of several investigations. Yet subtleties, such as the implications of the generalization of the Breit-Wigner formula for nonzero temperature and density, e.g. the question of collisional broadening, the role of Bose enhancement, etc., the possibility of the kinematic opening (or closing) of decay channels due to environmental effects, the problem of double counting through resonant and direct contributions, are often given insufficient emphasis. The present study attempts to point out these features using the rho and omega mesons as illustrative examples. The difference between the two versions of the Vector Meson Dominance Model in the present context is also presented. Effects of non-zero temperature and density, through vector meson masses and decay widths, on dilepton spectra are studied, for concreteness within the framework of a Walecka-type model, though most of the basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie

    Efimov Trimers near the Zero-crossing of a Feshbach Resonance

    Full text link
    Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anomalous solution of the three-boson Schr\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics.Comment: 8 pages, no figures, final versio

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Harmonising data on the correlates of physical activity and sedentary behaviour in young people: Methods and lessons learnt from the international Children's Accelerometry database (ICAD).

    Get PDF
    BACKGROUND: Large, heterogeneous datasets are required to enhance understanding of the multi-level influences on children's physical activity and sedentary behaviour. One route to achieving this is through the pooling and co-analysis of data from multiple studies. Where this approach is used, transparency of the methodology for data collation and harmonisation is essential to enable appropriate analysis and interpretation of the derived data. In this paper, we describe the acquisition, management and harmonisation of non-accelerometer data in a project to expand the International Children's Accelerometry Database (ICAD). METHOD: Following a consultation process, ICAD partners were requested to share accelerometer data and information on selected behavioural, social, environmental and health-related constructs. All data were collated into a single repository for cataloguing and harmonisation. Harmonised variables were derived iteratively, with input from the ICAD investigators and a panel of invited experts. Extensive documentation, describing the source data and harmonisation procedure, was prepared and made available through the ICAD website. RESULTS: Work to expand ICAD has increased the number of studies with longitudinal accelerometer data, and expanded the breadth of behavioural, social and environmental characteristics that can be used as exposure variables. A set of core harmonised variables, including parent education, ethnicity, school travel mode/duration and car ownership, were derived for use by the research community. Guidance documents and facilities to enable the creation of new harmonised variables were also devised and made available to ICAD users. An expanded ICAD database was made available in May 2017. CONCLUSION: The project to expand ICAD further demonstrates the feasibility of pooling data on physical activity, sedentary behaviour and potential determinants from multiple studies. Key to this process is the rigorous conduct and reporting of retrospective data harmonisation, which is essential to the appropriate analysis and interpretation of derived data. These documents, made available through the ICAD website, may also serve as a guide to others undertaking similar projects

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure
    corecore