We calculate the three-body recombination rate into a shallow dimer in a gas
of cold bosonic atoms near a Feshbach resonance using a two-channel contact
interaction model. The two-channel model naturally describes the variation of
the scattering length through the Feshbach resonance and has a finite effective
range. We confront the theory with the available experimental data and show
that the two-channel model is able to quantitatively describe the existing
data. The finite effective range leads to a reduction of the scaling factor
between the recombination minima from the universal value of 22.7. The
reduction is larger for larger effective ranges or, correspondingly, for
narrower Feshbach resonances.Comment: 9 pages, 7 figure