303 research outputs found

    Increased systemic inflammation is associated with cardiac and vascular dysfunction over the first 12 weeks of antiretroviral therapy among undernourished, HIV-infected adults in Southern Africa.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.INTRODUCTION: Persistent systemic inflammation is associated with mortality among undernourished, HIV-infected adults starting antiretroviral therapy (ART) in sub-Saharan Africa, but the etiology of these deaths is not well understood. We hypothesized that greater systemic inflammation is accompanied by cardiovascular dysfunction over the first 12 weeks of ART. METHODS: In a prospective cohort of 33 undernourished (body mass index <18.5 kg/m2) Zambian adults starting ART, we measured C-reactive protein (CRP), tumor necrosis factor-α receptor 1 (TNF-α R1), and soluble CD163 and CD14 at baseline and 12 weeks. An EndoPAT device measured the reactive hyperemia index (LnRHI; a measure of endothelial responsiveness), peripheral augmentation index (AI; a measure of arterial stiffness), and heart rate variability (HRV; a general marker of autonomic tone and cardiovascular health) at the same time points. We assessed paired changes in inflammation and cardiovascular parameters, and relationships independent of time point (adjusted for age, sex, and CD4+ T-cell count) using linear mixed models. RESULTS: Serum CRP decreased (median change -3.5 mg/l, p=0.02), as did TNF-α R1 (-0.31 ng/ml, p<0.01), over the first 12 weeks of ART. A reduction in TNF-α R1 over 12 weeks was associated with an increase in LnRHI (p=0.03), and a similar inverse relationship was observed for CRP and LnRHI (p=0.07). AI increased in the cohort as a whole over 12 weeks, and a reduction in sCD163 was associated with a rise in the AI score (p=0.04). In the pooled analysis of baseline and 12 week data, high CRP was associated with lower HRV parameters (RMSSD, p=0.01; triangular index, p<0.01), and higher TNF- α R1 accompanied lower HRV (RMSSD, p=0.07; triangular index, p=0.06). CONCLUSIONS: Persistent inflammation was associated with impaired cardiovascular health over the first 12 weeks of HIV treatment among undernourished adults in Africa, suggesting cardiac events may contribute to high mortality in this population.This work was supported by the Vanderbilt Meharry Center for AIDS Research (NIH grant number P30 AI54999); the NIH Fogarty International Center, Office of the Director, National Institutes of Health, National Heart, Blood, and Lung Institute, and National Institute of Mental Health, through the Vanderbilt-Emory-Cornell-Duke Consortium for Global Health Fellows (grant number R25 TW009337); the National Center for Advancing Translational Sciences (CTSA award number UL1TR000445) and the European and Developing Countries Clinical Trials Partnership (grant IP.2009.33011.004)

    A 12 week longitudinal study of microbial translocation and systemic inflammation in undernourished HIV-infected Zambians initiating antiretroviral therapy.

    Get PDF
    BACKGROUND: Undernourished, HIV-infected adults in sub-Saharan Africa have high levels of systemic inflammation, which is a risk factor for mortality and other adverse health outcomes. We hypothesized that microbial translocation, due to the deleterious effects of HIV and poor nutrition on intestinal defenses and mucosal integrity, contributes to heightened systemic inflammation in this population, and reductions in inflammation on antiretroviral therapy (ART) accompany reductions in translocation. METHODS: HIV-infected, Zambian adults with a body mass index <18.5 kg/m2 were recruited for a pilot study to assess the relationships between microbial translocation and systemic inflammation over the first 12 weeks of ART. To assess microbial translocation we measured serum lipopolysaccharide binding protein (LBP), endotoxin core IgG and IgM, and soluble CD14, and to assess intestinal permeability we measured the urinary excretion of an oral lactulose dose normalized to urinary creatinine (Lac/Cr ratio). Linear mixed models were used to assess within-patient changes in these markers relative to serum C-reactive protein (CRP), tumor necrosis factor-α receptor 1 (TNF-α R1), and soluble CD163 over 12 weeks, in addition to relationships between variables independent of time point and adjusted for age, sex, and CD4+ count. RESULTS: Thirty-three participants had data from recruitment and at 12 weeks: 55% were male, median age was 36 years, and median baseline CD4+ count was 224 cells/μl. Over the first 12 weeks of ART, there were significant decreases in serum levels of LBP (median change -8.7 μg/ml, p = 0.01), TNF-α receptor 1 (-0.31 ng/ml, p < 0.01), and CRP (-3.5 mg/l, p = 0.02). The change in soluble CD14 level over 12 weeks was positively associated with the change in CRP (p < 0.01) and soluble CD163 (p < 0.01). Pooling data at baseline and 12 weeks, serum LBP was positively associated with CRP (p = 0.01), while endotoxin core IgM was inversely associated with CRP (p = 0.01) and TNF-α receptor 1 (p = 0.04). The Lac/Cr ratio was not associated with any serum biomarkers. CONCLUSIONS: In undernourished HIV-infected adults in Zambia, biomarkers of increased microbial translocation are associated with high levels of systemic inflammation before and after initiation of ART, suggesting that impaired gut immune defenses contribute to innate immune activation in this population

    The charcoal trap: Miombo forests and the energy needs of people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a <it>miombo </it>woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.</p> <p>Results</p> <p>The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha<sup>-1</sup>, while the disturbed plot only contained 24 t ha<sup>-1</sup>. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m<sup>-2 </sup>y<sup>-1</sup>, in the first and 90 ± 16 g C m<sup>-2 </sup>in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the <it>miombo </it>woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO<sub>2 </sub>y<sup>-1</sup>. This is due to poor forest regeneration, although the resilience of <it>miombo </it>woodlands is high. Better post-harvest management could change this situation.</p> <p>Conclusions</p> <p>We argue that protection of <it>miombo </it>woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y<sup>-1 </sup>of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.</p

    Woody cover in wet and dry African savannas after six decades of experimental fires

    Get PDF
    Fire is an integral process in savannas ecosystems as it alters the extent of woody cover in these systems. This study examined the effects of varying fire frequencies and fire exclusion over a 60-year time period in South Africa. The presence of fire, irrespective of frequency, was influential in lowering tree abundance in the wet savanna, whilst the effect of fire in the dry savanna was limited. This study suggests that vegetation responses to fire are most likely influenced by rainfall, thus it is recommended that management strategies should take account of whether a savanna is a wet or dry system when implementing fire management regimes

    Modelling the impact of climate change on Tanzanian forests

    Get PDF
    This research article was published by Wiley Online Library in 2020Aim: Climate change is pressing extra strain on the already degraded forest eco system in Tanzania. However, it is mostly unknown how climate change will affect the distribution of forests in the future. We aimed to model the impacts of climate change on natural forests to help inform national-level conservation and mitigation strategies. Location: Tanzania. Methods: We conducted maximum entropy (MaxEnt) modelling to simulate forest habitat suitability using the Tanzanian national forest inventory survey (1,307 oc currences) and environmental data. Changes in forest habitats were simulated under two Representative Concentration Pathways (RCPs) emission scenarios RCP 4.5 and RCP 8.5 for 2055 and 2085. Results: The results indicate that climate change will threaten forest communities, especially fragmented strips of montane forests. Even under optimistic emission scenario, the extent of montane forest is projected to almost halve by 2085, inter secting many biodiversity hotspots across the Eastern Arc Mountains. Similarly, cli mate change is predicted to threaten microhabitat forests (i.e. thickets), with losses exceeding 70% by 2085 (RCP8.5). Other forest habitats are predicted to decrease (lowland forest and woodland) representing essential ecological networks, whereas suitable habitats for carbon-rich mangroves are predicted to expand by more than 40% at both scenarios. Conclusions: Climate change will impact forests by accelerating habitat loss, and fragmentation and the remaining land suitable for forests will also be subject to pres sures associated with rising demand for food and biofuels. These changes are likely to increase the probability of adverse impacts to the country's indigenous flora and fauna. Our findings, therefore, call for a shift in conservation efforts, focusing on (i) the enhanced management of existing protected areas that can absorb the impacts of future climate change, and (ii) expanding conservation efforts into newly suitable regions through effective land use planning and land reclamation, helping to preserve and enhance forest connectivity between fragmented patches
    corecore