157 research outputs found

    Productivity measurement and growth in Nigeria: challenges and prospects

    Get PDF
    Productivity (growth) measurements (describing the assessment of an economy’s rate of change in the ratio of a volume measure of output to a volume measure of input use) and related analysis are regular undertakings by staff of economic development of most nations and development institutions such as the OECD. Although they strive to accomplish objectives related to studying efficiency or the achievement of maximum output physically achievable under the use of current technology and given inputs, accounting for the contribution of real costs savings; introduction of benchmarks for production processes and to highlight living standards obtaining at points in time, its emphasis has been at the expense of examination of issues related to society (institutions), history, innovation and productivity change, which are concerned with promoting growth beyond mere productivity accounting. This paper has attempted to address all these issues as they pertain to Nigeria’s rather stagnant or declining economy. This slight modification was prompted by changes from philosophers concerned with the wider area of productivity measurement and change. The literature agrees that productivity measurement (growth accounting) only “identified the significance of different proximate sources of growth” but fails to employ institutional, historical case studies to investigate the underlying causes of the growth, innovation and productivity change. Details of deficiencies related to the foregoing issues are examined and policy recommendations drafted and presented to assist practitioners, policy and decision makers and other stakeholders.productivity, change, improvement, growth, labour, corruption.

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation

    The evolution of the H2O maser emission in the accretion burst source G358.93-0.03

    Get PDF
    Context. The massive young stellar object (MYSO) G358.93-0.03-MM1 showed an extraordinary near-infrared- to (sub-)millimetredark and far-infrared-loud accretion burst, which is closely associated with flares of several class II methanol maser transitions, and, later, a 22 GHz water maser flare. Aims. Water maser flares provide an invaluable insight into ejection events associated with accretion bursts. Although the short timescale of the 22 GHz water maser flare made it impossible to carry out a very long baseline interferometry observation, we could track it with the Karl G. Jansky Very Large Array (VLA). Methods. The evolution of the spatial structure of the 22 GHz water masers and their association with the continuum sources in the region is studied with the VLA during two epochs, pre- and post-H2O maser flare. Results. A drastic change in the distribution of the water masers is revealed: in contrast to the four maser groups detected during epoch I, only two newly formed clusters are detected during epoch II. The 22 GHz water masers associated with the bursting source MM1 changed in morphology and emission velocity extent. Conclusions. Clear evidence of the influence of the accretion burst on the ejection from G358.93-0.03-MM1 is presented. The accretion event has also potentially affected a region with a radius of ∼200 (∼13 500AU at 6.75 kpc), suppressing water masers associated with other point sources in this region. © O. S. Bayandina et al. 2022.Japan Society for the Promotion of Science, KAKEN: JP21H00032, JP21H01120, JP24340034; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2020-780; National Astronomical Observatory of Japan, NAOJAcknowledgements. The Ibaraki 6.7-GHz Methanol Maser Monitor (iMet) program is partially supported by the Inter-university collaborative project “Japanese VLBI Network (JVN)” of NAOJ and JSPS KAKENHI Grant Numbers JP24340034, JP21H01120, and JP21H00032 (YY). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2019.1.00768.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. In addition, publications from NA authors must include the standard NRAO acknowledgement: The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. A.M.S. acknowledges support by the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780. A.C.G. acknowledges support by PRIN-INAF-MAIN-STREAM 2017 “Protoplanetary disks seen through the eyes of new-generation instruments” and by PRIN-INAF 2019 “Spectroscopically tracing the disk dispersal evolution (STRADE)”

    Sub-arcsecond (sub)millimeter imaging of the massive protocluster G358.93-0.03 : discovery of 14 new methanol maser lines associated with a hot core

    Get PDF
    We present (sub)millimeter imaging at 0.5'' resolution of the massive star-forming region G358.93-0.03 acquired in multiple epochs at 2 and 3 months following the recent flaring of its 6.7 GHz methanol maser emission. Using SMA and ALMA, we have discovered 14 new Class II methanol maser lines ranging in frequency from 199 GHz to 361 GHz, which originate mostly from vt=1 torsionally-excited transitions and include one vt=2 transition. The latter detection provides the first observational evidence that Class II maser pumping involves levels in the vt=2 state. The masers are associated with the brightest continuum source (MM1), which hosts a line-rich hot core. The masers present a consistent curvilinear spatial velocity pattern that wraps around MM1, suggestive of a coherent physical structure 1200 au in extent. In contrast, the thermal lines exhibit a linear pattern that crosses MM1 but at progressive position angles that appear to be a function of either increasing temperature or decreasing optical depth. The maser spectral profiles evolved significantly over one month, and the intensities dropped by factors of 3.0 to 7.2, with the vt=2 line showing the largest change. A small area of maser emission from only the highest excitation lines closest to MM1 has disappeared. There are seven additional dust continuum sources in the protocluster, including another hot core (MM3). We do not find evidence for a significant change in (sub)millimeter continuum emission from any of the sources during the one month interval, and the total protocluster emission remains comparable to prior single dish measurements.PostprintPeer reviewe

    First parallax measurements toward a 6.7 GHZ methanol maser with the Australian long baseline array - Distance to G 339.884-1.259

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. We have conducted the first parallax and proper motion measurements of 6.7 GHz methanol maser emission using the Australian Long Baseline Array. The parallax of G 339.8841.259 measured from five epochs of observations is 0.48 ± 0.08 mas, corresponding to a distance of - 2.1+0.4 -0.3 kpc, placing it in the Scutum spiral arm. This is consistent (within the combined uncertainty) with the kinematic distance estimate for this source at 2.5 ± 0.5 kpc using the latest Solar and Galactic rotation parameters. We find from the Lyman continuum photon flux that the embedded core of the young star is of spectral type B1, demonstrating that luminous 6.7 GHz methanol masers can be associated with high-mass stars toward the lower end of the mass range

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    Constraints on the intergalactic magnetic field using Fermi-LAT and H.E.S.S. blazar observations

    Full text link
    Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron-positron pairs, which can subsequently initiate electromagnetic cascades. The γ\gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-the-art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B>7.1×1016B > 7.1\times10^{-16} G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 10410^4 (10710^7) yr, IGMF strengths below 1.8×10141.8\times10^{-14} G (3.9×10143.9\times10^{-14} G) are excluded, which rules out specific models for IGMF generation in the early universe.Comment: 20 pages, 7 figures, 4 tables. Accepted for publication in ApJ Letters. Auxiliary data is provided in electronic format at https://zenodo.org/record/801431

    HESS J1809-193: a halo of escaped electrons around a pulsar wind nebula?

    Full text link
    Context. HESS J1809-193 is an unassociated very-high-energy γ\gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of γ\gamma-ray emission up to energies of \sim100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193. Aims. We aim to understand the origin of the γ\gamma-ray emission of HESS J1809-193. Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework. Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component that exhibits a spectral cut-off at \sim13 TeV, and a compact component that is located close to PSR J1809-1917 and shows no clear spectral cut-off. The Fermi-LAT analysis also revealed extended γ\gamma-ray emission, on scales similar to that of the extended H.E.S.S. component. Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward. (abridged)Comment: 14 pages, 10 figures. Accepted for publication in A&A. Corresponding authors: Vikas Joshi, Lars Mohrman

    Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales > 2 deg poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 deg in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8±0.7)×1012(2.8\pm0.7)\times10^{-12} cm2^{-2}s1^{-1}TeV1^{-1} at 1 TeV is obtained within a 1 deg radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0=7.61.2+1.5×1027D_0 = 7.6^{+1.5}_{-1.2} \times 10^{27} cm2^2s1^{-1}, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic
    corecore