236 research outputs found

    Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis

    Get PDF
    INTRODUCTION: We conducted the present study to evaluate the changes in serum total antioxidant capacity (TAC) in patients with severe sepsis and to investigate the association between serum TAC and clinical severity. METHOD: This was a prospective observational study involving a sample of patients who met established criteria for severe sepsis and were admitted to the emergency department of a university teaching hospital. Serum TAC was determined using the total radical-trapping antioxidant parameter method. The levels of TAC, uric acid, albumin, and bilirubin in sera were obtained in the emergency department and evaluated to determine whether there were any correlations between the major antioxidant biomarkers and clinical severity of sepsis. The Acute Physiology and Chronic Health Evaluation (APACHE) II score was used for clinical evaluation of the severity of sepsis. RESULTS: A total of 73 patients with sepsis, with a mean (± standard deviation) APACHE II score of 23.2 ± 8.2 and a mortality rate of 26.0%, were included. Seventy-six healthy individuals served as control individuals. Among the patients, serum TAC levels correlated significantly with APACHE II scores. Patients who died also had higher TAC than did those who survived. Serum uric acid levels correlated significantly with serum TAC and APACHE II scores in patients with severe sepsis. CONCLUSION: Elevated serum TAC level may reflect clinical severity of sepsis. In addition, serum uric acid levels appear to contribute importantly to the higher TAC levels observed in patients with severe sepsis

    Detection of EBV Infection and Gene Expression in Oral Cancer from Patients in Taiwan by Microarray Analysis

    Get PDF
    Epstein-Barr virus is known to cause nasopharyngeal carcinoma. Although oral cavity is located close to the nasal pharynx, the pathogenetic role of Epstein-Barr virus (EBV) in oral cancers is unclear. This molecular epidemiology study uses EBV genomic microarray (EBV-chip) to simultaneously detect the prevalent rate and viral gene expression patterns in 57 oral squamous cell carcinoma biopsies (OSCC) collected from patients in Taiwan. The majority of the specimens (82.5%) were EBV-positive that probably expressed coincidently the genes for EBNAs, LMP2A and 2B, and certain structural proteins. Importantly, the genes fabricated at the spots 61 (BBRF1, BBRF2, and BBRF3) and 68 (BDLF4 and BDRF1) on EBV-chip were actively expressed in a significantly greater number of OSCC exhibiting exophytic morphology or ulceration than those tissues with deep invasive lesions (P = .0265 and .0141, resp.). The results may thus provide the lead information for understanding the role of EBV in oral cancer pathogenesis

    Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1

    Get PDF
    Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the proteasome. We show that pharmacological inhibition of poly(ADP-ribose) polymerase activity in cells from two different species leads to rapid decrease in median telomere length and stabilization at a lower setting. Specific knockdown of poly(ADP-ribose) polymerase-1 by RNA interference had the same effect. The length of the single-stranded telomeric overhang as well as telomerase activity were not affected. Release of inhibition led to a fast re-gain in telomere length to control levels in cells expressing active telomerase. We conclude that poly(ADP-ribose) polymerase-1 activity and probably its interplay with telomeric-repeat binding factor-2 is an important determinant in telomere regulation. Our findings reinforce the link between poly(ADP-ribosyl)ation and aging/longevity and also impact on the use of poly(ADP-ribose) polymerase inhibitors in tumor therapy

    Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    Get PDF
    BACKGROUND: Photocatalysis of titanium dioxide (TiO(2)) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host

    Interventions for preventing oral mucositis for patients with cancer receiving treatment

    Get PDF
    Interventions for preventing oral mucositis for patients with cancer receiving treatmentTreatment for cancer (including bone marrow transplant) can cause oral mucositis (severe ulcers in the mouth). This painful condition can cause difficulties in eating, drinking and swallowing, and may also be associated with infections which may require the patient to stay longer in hospital. Different strategies are used to try and prevent this condition, and the review of trials found that some of these are effective. Two interventions, cryotherapy (ice chips) and keratinocyte growth factor (palifermin®) showed some benefit in preventing mucositis. Sucralfate is effective in reducing the severity of mucositis, and a further seven interventions, aloe vera, amifostine, intravenous glutamine, granulocyte‐colony stimulating factor (G‐CSF), honey, laser and antibiotic lozenges containing polymixin/tobramycin/amphotericin (PTA) showed weaker evidence of benefit. These were evaluated in patients with different types of cancer, undergoing different types of cancer treatment. Benefits may be restricted to the disease and treatment combinations evaluated
    corecore