219 research outputs found

    Columbus, Nebraska: Southern Housing Development Design Proposal

    Get PDF
    The following paper proposes the design and creation of a new housing development in the city of Columbus, Nebraska in a lot to the south of the city and directly north of the Columbus wastewater treatment plant. The goal of this proposal is to provide readers with confidence that our company is the most qualified to complete the project and will create the safest, most comfortable, most efficient, and most cost-effective final design. This proposal seeks to offer a solution to the lack of affordable housing for the growing workforce in Columbus. In order to arrive at this solution, each subdiscipline of civil engineering (geotechnical, structural, water resources, environmental, and transportation) is utilized to research the existing conditions of the area and to then design the infrastructure of the housing development. Watershed delineation, soil analysis, environmental impact studies, and current traffic studies are types of research done to understand the existing conditions. Site cut and fill, storm and sanitary sewer network design, roadway layout and geometrics, and steel beam and column loading and connections are then created to produce a final design for the new neighborhood. This final design will include around 40 lots, slopes and roadway superelevation to drive sewer flow, a wide set of streets to provide high mobility and accessibility in the development, and a steel park structure for entertainment. The total surveying, design, and construction of this development is estimated to take around 36 weeks and cost $2.5 million

    Generation and physiological roles of linear ubiquitin chains

    Get PDF
    Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation

    Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling.

    Get PDF
    AbstractWe have reported previously that activation of the MyD88-signaling network rapidly induces the formation of hybrid ubiquitin chains containing both Lys63-linked and Met1-linked ubiquitin (Ub) oligomers, some of which are attached covalently to Interleukin Receptor Associated kinase 1. Here we show that Lys63/Met1-Ub hybrids are also formed rapidly when the TNFR1/TRADD, TLR3/TRIF- and NOD1/RIP2-signaling networks are activated, some of which are attached covalently to Receptor-Interacting Protein 1 (TNFR1 pathway) or Receptor-Interacting Protein 2 (NOD1 pathway). These observations suggest that the formation of Lys63/Met1-Ub hybrids are of general significance for the regulation of innate immune signaling systems, and their potential roles in vivo are discussed. We also report that TNFα induces the attachment of Met1-linked Ub chains directly to TNF receptor 1, which do not seem to be attached covalently to Lys63-linked or other types of ubiquitin chain

    GNL3L stabilizes the TRF1 complex and promotes mitotic transition

    Get PDF
    Telomeric repeat binding factor 1 (TRF1) is a component of the multiprotein complex “shelterin,” which organizes the telomere into a high-order structure. TRF1 knockout embryos suffer from severe growth defects without apparent telomere dysfunction, suggesting an obligatory role for TRF1 in cell cycle control. To date, the mechanism regulating the mitotic increase in TRF1 protein expression and its function in mitosis remains unclear. Here, we identify guanine nucleotide-binding protein-like 3 (GNL3L), a GTP-binding protein most similar to nucleostemin, as a novel TRF1-interacting protein in vivo. GNL3L binds TRF1 in the nucleoplasm and is capable of promoting the homodimerization and telomeric association of TRF1, preventing promyelocytic leukemia body recruitment of telomere-bound TRF1, and stabilizing TRF1 protein by inhibiting its ubiquitylation and binding to FBX4, an E3 ubiquitin ligase for TRF1. Most importantly, the TRF1 protein-stabilizing activity of GNL3L mediates the mitotic increase of TRF1 protein and promotes the metaphase-to-anaphase transition. This work reveals novel aspects of TRF1 modulation by GNL3L

    Selectivity of the Ubiquitin-Binding Modules

    Get PDF
    Ubiquitin-binding modules are constituents of cellular proteins that mediate the effects of ubiquitylation by making transient, non-covalent interactions with ubiquitin molecules. While some ubiquitin- binding modules bind single ubiquitin moieties, others are selective for specific ubiquitin chains of different linkage types and lengths. In recent years, functions of ubiquitin chains that are polymerized through their Lys or N-terminal Met (i.e. linear chains) residues have been linked to a variety of cellular processes. Selectivity of ubiquitin-binding modules for different ubiquitin chain types appears as a key to the distinct regulatory consequences during protein quality control pathways, receptor endocytosis, gene transcription, signaling via the NF-jB pathway, and autophagy

    Chromosome Tips Damaged in Anaphase Inhibit Cytokinesis

    Get PDF
    Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit

    Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ

    Get PDF
    Telomeres protect chromosome ends from being viewed as double-strand breaks and from eliciting a DNA damage response. Deprotection of chromosome ends occurs when telomeres become critically short because of replicative attrition or inhibition of TRF2. In this study, we report a novel form of deprotection that occurs exclusively after DNA replication in S/G2 phase of the cell cycle. In cells deficient in the telomeric poly(adenosine diphosphate ribose) polymerase tankyrase 1, sister telomere resolution is blocked. Unexpectedly, cohered sister telomeres become deprotected and are inappropriately fused. In contrast to telomeres rendered dysfunctional by TRF2, which engage in chromatid fusions predominantly between chromatids from different chromosomes (Bailey, S.M., M.N. Cornforth, A. Kurimasa, D.J. Chen, and E.H. Goodwin. 2001. Science. 293:2462–2465; Smogorzewska, A., J. Karlseder, H. Holtgreve-Grez, A. Jauch, and T. de Lange. 2002. Curr. Biol. 12:1635–1644), telomeres rendered dysfunctional by tankyrase 1 engage in chromatid fusions almost exclusively between sister chromatids. We show that cohered sister telomeres are fused by DNA ligase IV–mediated nonhomologous end joining. These results demonstrate that the timely removal of sister telomere cohesion is essential for the formation of a protective structure at chromosome ends after DNA replication in S/G2 phase of the cell cycle

    MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells

    Get PDF
    As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF
    corecore