845 research outputs found

    Non-blind Image Restoration Based on Convolutional Neural Network

    Full text link
    Blind image restoration processors based on convolutional neural network (CNN) are intensively researched because of their high performance. However, they are too sensitive to the perturbation of the degradation model. They easily fail to restore the image whose degradation model is slightly different from the trained degradation model. In this paper, we propose a non-blind CNN-based image restoration processor, aiming to be robust against a perturbation of the degradation model compared to the blind restoration processor. Experimental comparisons demonstrate that the proposed non-blind CNN-based image restoration processor can robustly restore images compared to existing blind CNN-based image restoration processors.Comment: Accepted by IEEE 7th Global Conference on Consumer Electronics, 201

    Researching Customer Satisfaction And Loyalty To Boost Marketing Effectiveness: A Look At Japans Auto Dealerships

    Get PDF
    Faced with a sluggish economy, car sales have been disappointing in recent years. Given this situation, it is critical that dealerships shift the focus of their sales and marketing activities from attracting new customers to keeping the customers they already have. This move can be expected not only to reduce sales costs, but also contribute to healthy profits

    EMR-MSF: Self-Supervised Recurrent Monocular Scene Flow Exploiting Ego-Motion Rigidity

    Full text link
    Self-supervised monocular scene flow estimation, aiming to understand both 3D structures and 3D motions from two temporally consecutive monocular images, has received increasing attention for its simple and economical sensor setup. However, the accuracy of current methods suffers from the bottleneck of less-efficient network architecture and lack of motion rigidity for regularization. In this paper, we propose a superior model named EMR-MSF by borrowing the advantages of network architecture design under the scope of supervised learning. We further impose explicit and robust geometric constraints with an elaborately constructed ego-motion aggregation module where a rigidity soft mask is proposed to filter out dynamic regions for stable ego-motion estimation using static regions. Moreover, we propose a motion consistency loss along with a mask regularization loss to fully exploit static regions. Several efficient training strategies are integrated including a gradient detachment technique and an enhanced view synthesis process for better performance. Our proposed method outperforms the previous self-supervised works by a large margin and catches up to the performance of supervised methods. On the KITTI scene flow benchmark, our approach improves the SF-all metric of the state-of-the-art self-supervised monocular method by 44% and demonstrates superior performance across sub-tasks including depth and visual odometry, amongst other self-supervised single-task or multi-task methods.Comment: To appear at ICCV 202

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data
    corecore