133 research outputs found
Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion
Underactuation is ubiquitous in human locomotion and should be ubiquitous in
bipedal robotic locomotion as well. This chapter presents a coherent theory for
the design of feedback controllers that achieve stable walking gaits in
underactuated bipedal robots. Two fundamental tools are introduced, virtual
constraints and hybrid zero dynamics. Virtual constraints are relations on the
state variables of a mechanical model that are imposed through a time-invariant
feedback controller. One of their roles is to synchronize the robot's joints to
an internal gait phasing variable. A second role is to induce a low dimensional
system, the zero dynamics, that captures the underactuated aspects of a robot's
model, without any approximations. To enhance intuition, the relation between
physical constraints and virtual constraints is first established. From here,
the hybrid zero dynamics of an underactuated bipedal model is developed, and
its fundamental role in the design of asymptotically stable walking motions is
established. The chapter includes numerous references to robots on which the
highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte
Etude de l'efficacité d'un humain avec une canne
International audienceThis paper proposes a mathematical model of the walking with canes for an anthropomorphic biped with two identical legs with massless feet, two identical arms, and a torso. The walking is performed in the sagittal plane. The walking gait, which is cyclic, is composed of single support (SS) phases and impacts. The period of this cyclic walking is determined by the stride, because the motion of coupled arms is synchronized on this stride. The cane is considered massless. Thus in order to compare the walking with and without massless cane, the dynamic dynamic. Numerical tests show that the magnitude of the ground reaction in the stance foot is less with a massless-cane assistance than without one. Especially, the results prove that it is better to use canes with a handle
Combining precision and power to maximize performance: a case study of the woodpecker's neck
National audienc
Continuous second order sliding mode based finite time tracking of a fully actuated biped robot
International audienceA second order sliding mode controller is modified to form a continuous homogeneous controller. Uniform finite time stability is proved by extending the homogeneity principle of discontinuous systems to the continuous case with uniformly decaying piece-wise continuous nonhomogeneous disturbances. The modified controller is then utilised to track reference trajectories for all the joints of a fully actuated biped robot where the joint torque is modeled as the control input. The modified controller ensures the attainment of a finite settling time between two successive impacts. The main contribution of the paper is to provide straightforward and realizable engineering guidelines for reference trajectory generation and for tuning a robust finite time controller in order to achieve stable gait of a biped in the presence of an external force disturbance. Such a disturbance has destabilising effects in both continuous and impact phases. Numerical simulations of a biped robot are shown to support the theoretical results
Modelling, design and control of a bird neck using tensegrity mechanisms
International audienceIn birds, the neck exhibits remarkable performances and serves as a dextrous arm for performing various tasks. Accordingly, it is an interesting bioinspiration for designing new manipulators with enhanced performances. This paper proposes a preliminary bird neck model using several stacked tensegrity crossed bar mechanisms. It addresses several issues regarding kinetostatic and dynamic modelling, design and control
3.5 The homing flight ring test: method for the assessment of sublethal doses of plant protection products on the honey bee in field conditions
International audienc
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity
This is the final version of the article. Available from Elsevier via the DOI in this record.Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.M.L. was supported by funding from the Wellcome Trust (https://wellcome.ac.uk) (109776/Z/15/Z), which was awarded to E.R.W. E.R.W. further acknowledges the Natural Environment Research Council (https://nerc.ukri.org) (NE/M018350/1), the BBSRC (BB/N017412/1), and the European Research Council (https://erc.europa.eu) (ERC-STG-2016-714478 - EVOIMMECH) for funding. S.v.H. acknowledges funding from the People Programme (Marie Curie Actions; https://ec.europa.eu/research/mariecurieactions/) of the European Union’s Horizon 2020 (REA grant agreement no. 660039) and from the BBSRC (BB/R010781/1). S.G. acknowledges funding (Visiting Professorship) from the Leverhulme Trust. A.B. acknowledges funding from the Royal Society. The authors thank Olivier Fradet for experimental contributions and Adair Borges and Joe Bondy-Denomy (UCSF) for providing DMS3mvir-AcrIF4 and phage JBD26
The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity
This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility:
Statistical analyses were carried out using the GraphPad Prism 7 software and R (v. 3.5.1). Raw data files from the experiments are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.937s037CRISPR-Cas immune systems are present in around half of bacterial genomes. Given the specificity and adaptability of this immune mechanism, it is perhaps surprising that they are not more widespread. Recent insights into the requirement for specific host factors for the function of some CRISPR-Cas subtypes, as well as the negative epistasis between CRISPR-Cas and other host genes, have shed light on potential reasons for the partial distribution of this immune strategy in bacteria. In this study, we examined how mutations in the bacterial mismatch repair system, which are frequently observed in natural and clinical isolates and cause elevated host mutation rates, influence the evolution of CRISPR-Cas-mediated immunity. We found that hosts with a high mutation rate very rarely evolved CRISPR-based immunity to phage compared to wild-type hosts. We explored the reason for this effect and found that the higher frequency at which surface mutants pre-exist in the mutator host background causes them to rapidly become the dominant phenotype under phage infection. These findings suggest that natural variation in bacterial mutation rates may, therefore, influence the distribution of CRISPR-Cas adaptive immune systems. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'
Evolution of central pattern generators for the control of a five-link bipedal walking mechanism
Central pattern generators (CPGs), with a basis is neurophysiological
studies, are a type of neural network for the generation of rhythmic motion.
While CPGs are being increasingly used in robot control, most applications are
hand-tuned for a specific task and it is acknowledged in the field that generic
methods and design principles for creating individual networks for a given task
are lacking. This study presents an approach where the connectivity and
oscillatory parameters of a CPG network are determined by an evolutionary
algorithm with fitness evaluations in a realistic simulation with accurate
physics. We apply this technique to a five-link planar walking mechanism to
demonstrate its feasibility and performance. In addition, to see whether
results from simulation can be acceptably transferred to real robot hardware,
the best evolved CPG network is also tested on a real mechanism. Our results
also confirm that the biologically inspired CPG model is well suited for legged
locomotion, since a diverse manifestation of networks have been observed to
succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization,
and quantitative result
Preliminary survey of backdrivable linear actuators for humanoid robots
This paper presents a preliminary survey of the use of direct drive linear motors for joint actuation of a humanoid robot. Their prime asset relies on backdrivability, a significant feature to properly cushion high impacts between feet and ground during dynamic walking or running. Our long-term goal is the design of high performance human size bipedal walking robots. However, this paper focuses on a preliminary feasibility study: the design and experimentation of a mono-actuator lower limb
- …