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Continuous second order sliding mode based robust finite time tracking

of a fully actuated biped robot

Harshal B. Oza, Yury V. Orlov, Sarah K. Spurgeon, Yannick Aoustin and Christine Chevallereau

Abstract— A second order sliding mode controller is modified
to form a continuous homogeneous controller. Uniform finite
time stability is proved by extending the homogeneity principle
of discontinuous systems to the continuous case with uniformly
decaying piece-wise continuous nonhomogeneous disturbances.
The modified controller is then utilised to track reference
trajectories for all the joints of a fully actuated biped robot
where the joint torque is modeled as the control input. The
modified controller ensures the attainment of a finite settling
time between two successive impacts. The main contribution
of the paper is to provide straightforward and realizable
engineering guidelines for reference trajectory generation and
for tuning a robust finite time controller in order to achieve
stable gait of a biped in the presence of an external force
disturbance. Such a disturbance has destabilising effects in both
continuous and impact phases. Numerical simulations of a biped
robot are shown to support the theoretical results.

I. INTRODUCTION

A continuous second order sliding mode state feedback

synthesis for achieving finite time convergence of the joint

trajectories of a biped is explored. The biped robot under

consideration is a fully actuated robot. Gait stability is to be

ensured by designing the reference trajectories and ensuring

that they are tracked in finite time. Second order sliding mode

(SOSM) controllers [1] are recognized as a good candidate

for robotics [2] due to their simplicity and underlying ro-

bustness properties. There are geometric homogeneity based

results [3], [4], [5] for SOSM which highlight finite time

convergence in the presence of persisting disturbances.

The main focus of this paper is on finite time tracking of

the joint trajectories of a fully actuated biped robot to desired

periodic trajectories by using a continuous second order

sliding mode controller. Tuning guidelines of the controller

parameters are also a focus. The present paper utilizes a ro-

bust continuous homogeneous controller while requiring only

knowledge of an upper bound on the disturbance to cause

the tracking errors to converge to zero in finite time between

successive impacts. The finite time stability is substantiated

by non-smooth Lyapunov analysis and homogeneity of the

discontinuous right hand side. The theoretical motivation to
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study a new Lyapunov and homogeneity framework for pla-

nar continuous homogeneous vector fields is to give uniform

finite time stability with respect to the initial data and the

disturbances. The motivation also lies in studying robustness

to discontinuous disturbances which is a stronger property

than the existing methods for continuous disturbances which

utilise the link between homogeneity [6] [7] and finite time

stability [8].

From a practical viewpoint, the motivation stems from the

need to propose tuning guidelines for a continuous SOSM

control for the presented class of biped robots. Thus, the

goal is to provide engineering guidelines for achieving stable

walking gait of a biped in finite time.

Since the early results [9], [10], [11], there has been

active interest amongst researchers in the study of finite time

stability. The homogeneous controller used in this paper is

capable of rejecting disturbances of a broader class than

those reported in the existing continuous finite time controller

literature. Of particular importance is the fact that piece-

wise continuous vanishing disturbances can be rejected.

Asymptotic stability of a continuous homogeneous controller

introduced in [12] was proved in [2] in the presence of

vanishing non-smooth disturbances. The proofs of the claims

of robust finite time stability presented in the following

sections of this paper are rather involved and are being

published elsewhere [13]. Similar results without the proof

of robustness can also be found in [14].

The literature on control of biped robots is vast (see [15],

[16], [17], or [18] for a comprehensive survey). Previous

work utilizing SOSM includes [19], [20]. The main contri-

bution from the viewpoint of biped control is that the tuning

guidelines for the robust continuous controller are given as

a function of the upper bound on the disturbance while

solving the tracking problem to attain a pre-specified cyclic

walking gait. During this walking gait, which is composed

of single support phases and impacts, the biped is always

fully actuated. This cyclic gait is the result of an optimization

based on a sthenic criterion and on the definition of nonlinear

constraints such as no take-off, no rotation and no sliding of

the stance foot on the ground. Then the fully actuated biped

is stable when the desired cyclic gait is tracked perfectly.

The robust controller ensures that the tracking errors always

converge to the origin before the subsequent impact event

occurs thereby guaranteeing a stable walking biped. The

continuous controller is implementable since the joint torque

is modeled as the control input. Previous results that utilise a

finite time controller without robustness studies for an under-

actuated biped can be found in [21]. The remainder of the



paper is organized as follows. Section II presents the problem

statement. Section III presents the synthesis of the proposed

controller along with a Lyapunov analysis including a sketch

of the proof of finite time stability. Section IV presents

the model of a fully actuated biped. Numerical simulation

results are presented in Section V followed by conclusions

in Section VI.

II. PROBLEM STATEMENT

Let the system dynamics be given as follows:

ė1 = e2 ė2 = u+ωωω(e, t), (1)

This system corresponds to the tracking dynamics of a

mechanical system (such as a biped) with a computed control

law (see section IV.A). Here e1 = x1(t)− xd
1(t) and e2 =

x2(t)−xd
2(t) are respectively the error variables in position

and in velocity, u is the control law to be synthesized, and

ωωω(e, t) =
[

ω1(e, t) ω2(e, t) . . . ω6(t)
]⊤

is an external

disturbance. Let (xd
1(t),x

d
2(t) = ẋd

1(t)) represent a desired

trajectory as functions of time for the position x1 and the

velocity x2. The following assumptions are made throughout.

Assumption 1: esssup
t≥0

|ω j| ≤ N|e2 j
|

α
2 (|e1 j

|
α

2(2−α) + |e2 j
|

α
2 )

where N is an a priori known positive scalar and j =
1,2, . . . ,6.

Assumption 2: The upper bound R̃ on the quantity

max{|x1(t0)|, |x2(t0)|, |x
d
1(t0)|, |x

d
2(t0)|}, where t0 is the initial

time, is known a priori and finite.

The first assumption appears in the literature [1], [4] and

represents a uniform upper-bound on the disturbance. The

second assumption dictates that the results presented in the

paper are of a local nature1. The aim of the paper is to

utilize (i) a continuous SOSM state feedback synthesis and

(ii) the corresponding tuning guidelines for the controller

gains to ensure finite time convergence of the states of

a fully actuated biped robot to the desired trajectory. This

synthesis and the tuning guidelines are then utilised for biped

control using the equivalence between the error dynamics of

(1) and that of each actuated joint of the biped.

III. CONTINUOUS SOSM SYNTHESIS

The following control law is proposed in [13] as follows:

u j(e1 j
,e2 j

) =−(µ1|e2 j
|α +µ3|e1 j

|
α

2(2−α) |e2 j
|

α
2 )sign(e2 j

)

−µ2|e1 j
|

α
2−α sign(e1 j

)
(2)

where, j = 1,2, . . . ,6, u =
[

u1 u2 . . . u6

]⊤
, e1 =

[

e11
e12

. . . e16

]⊤
and e2 =

[

e21
e22

. . . e26

]⊤
.

The proof of finite time stability and the tuning guidelines

can be substantiated by a rigorous Lyapunov analysis where

the details are not included here due to space constraints.

The detailed proof is being published elsewhere [13] and is

briefly outlined below.

1Such an upper bound is generally known a priori for a large class of
mechanical systems.

Theorem 1: Given α ∈ ( 2
3
,1), the closed-loop system (1),

(2) is globally equiuniformly finite time stable, regardless

of the presence of any disturbance ω j(e, t), satisfying the

condition stated in Assumption 1 with

0 < N < min{µ1,µ3},µ2 > max{µ1,µ3}. (3)

The definitions [4, 2.1-2.10] and [4, lemma 2.11] for

the concepts of equiuniform stability and homogeneity are

recalled. The key idea is that of proving equiuniform asymp-

totic stability of the perturbed double integrator (1), (2).

Then, equiuniform finite time stability of (1), (2) is proven

via homogeneity of the same under a homogeneous param-

eterisation of the disturbance ωωω(eee, t) thereby enabling the

application of the existing result [4, Th. 3.1]. It is important

to note that there is no assumption being made about the

continuity of ωωω(eee, t). This allows for possibly discontinuous

vanishing disturbances thereby calling for Filippov’s solution

concept [22]. Hence, the controller (2) is robust to a broader

class of disturbances than those reported thus far in the

continuous finite time stabilisation paradigm.

Proof: The sketch of the proof is provided for one

perturbed double integrator out of a total of six in the closed-

loop system (1), (2). The proof for one double integrator is

enough in the context of biped robots (to be discussed in the

next section) since the six double integrators are decoupled.

Proof of global equiuniform stability: The Lyapunov func-

tion (proposed in [12] for the unperturbed case and in [2]

for the perturbed case)

V (e1 j
,e2 j

) = µ2
2−α

2
|e1 j

|
2

2−α +
1

2
e2

2 j
(4)

has a non-positive temporal derivative

V̇ ≤ −(µ1 −N)|e2 j
|α+1 − (µ3 −N)|e1 j

|
α

2(2−α) |e2 j
|

α
2 +1

along the trajectory of the closed-loop system (1), (2). The

equiuniform stability of the closed-loop system (1), (2) can

be concluded by applying the invariance principle [23],

[24] since the equilibrium point e1 j
= e2 j

= 0 is the only

trajectory of (1), (2) on the invariance manifold e2 j
= 0 where

V̇ (e1 j
,e2 j

) = 0.

Proof of global equiuniform asymptotic stability: Under-

taking a similar semi-global analysis to that proposed in [4]

for the present continuous case, it is assumed that an a priori

R̃ is known such that V ≤ R̃ holds true for all t ∈ R (see

Assumption 2). The previous step proves that the trajectories

initialised within the set {(e1 j
,e2 j

) : V (e1 j
,e2 j

) ≤ R̃} for

arbitrarily chosen R̃ do not leave this set for all t. Then,

considering a Lyapunov function

VR̃(e1 j
,e2 j

) =V +
4

∑
i=1

Ui, (5)

where the indefinite functions Ui, i = 1,2,3,4 are defined by

the expressions

U1 = κ1e1 j
e2 j

|e2 j
|, U3 = 2κ1κ2κ3e3

1 j
e2 j

|e2 j
|

α
2

U2 = κ1κ2|e1 j
|

4−α
2(2−α) sign(e1 j

)e2 j
|e2 j

|α (6)

U4 = κ1κ2κ3κ4e5
1 j

e2 j
,



and its temporal derivative

V̇R̃ = V̇ +
4

∑
i=1

U̇i ≤ −((µ1 −N)−κ1β1)|e2 j
|α+1 (7)

−κ1κ2κ3κ4e4
1 j
|e1 j

|
2

2−α ,

where κi, i = 1,2,3,4 and β1 are adequately small positive

scalars that can be chosen a priori for every given R̃, proves

that the closed-loop system (1), (2) is equiuniformly asymp-

totically stable as per [4, Definition 2.7] within the compact

set {(e1 j
,e2 j

) : V (e1 j
,e2 j

)≤ R̃} for arbitrarily chosen R̃.

Proof of global equiuniform finite time stability: The fol-

lowing parameterisation ω(e, t), ωc(e, t) of the disturbance

ωc(e1 j
,e2 j

, t) = cq+r2 ω(c−r1e1 j
,c−r2e2 j

,cqt) (8)

is valid in the sense of the upper bound stated in Assumption

1 since the expression

|ωc(e1 j
,e2 j

, t)| ≤ cq+r2−r2α N(|e1 j
|

α
2(2−α) |e2 j

|
α
2 + |e2 j

|α)

≤ N(|e1 j
|

α
2(2−α) |e2 j

|
α
2 + |e2 j

|α) (9)

holds true due to the fact that the expression cq+r2−αr2 ≤ 1

holds true, where c is homogeneity parameter [4], r1 =
2−α
1−α ,r2 = 1

1−α are the dilations and q = −1 is the homo-

geneity degree. The closed-loop system (1), (2) is a globally

homogeneous system with negative homogeneity degree with

respect to dilations r1,r2 under the parameterisation (8).

Combining this with equiuniform asymptotic stability proves

global finite time stability by applying [4, Th. 3.1].

IV. BIPED MODEL

The bipedal robot considered in this section is walking on

a rigid and horizontal surface. It is modeled as a planar biped,

which consists of a torso, hips, two legs with knees and feet

(see Fig. 1). The walking gait takes place in the sagittal plane

and is composed of single support phases and impacts. The

complete model of the biped robot consists of two parts: the

differential equations describing the dynamics of the robot

during the swing phase, and an impulse model of the contact

event (the impact between the swing leg and the ground is

modeled as a contact between two rigid bodies [25]). In

the single support phase, the dynamic model, considering

an implicit contact of the stance foot with the ground (i.e.

there is no take-off, no rotation and no sliding during the

single support phase), can be written as follows:

D(q)q̈+C(q, q̇)+G(q) = Γ (10)

with q= (q1 q2 q3 q4 q5 q6)
⊤ ∈R

6 the vector of the general-

ized coordinates (see Fig. 1), Γ= (Γ1 Γ2 Γ3 Γ4 Γ5 Γ6)
⊤ ∈R

6

is the vector of joint torques 2, D is the symmetric, positive

definite 6× 6 inertia matrix. As the kinetic energy of the

biped is invariant under rotation of the world frame, q1

defines the orientation of the biped in the world frame.

The terms C(q, q̇) and G(q) are the 6× 1 matrices of the

2Leg 1 is the stance one, leg 2 the swing one.

centrifugal, coriolis and gravity forces respectively. From

(10), the state-space form can be written as follows:

ẋ =

(

ẋ1

ẋ2

)

=

(

x2

D−1(−C−G+ΓΓΓ)

)

= f (x)+g(x1) ·ΓΓΓ

(11)

with x =
(

q⊤ q̇⊤
)⊤

=
(

x⊤1 x⊤2
)⊤

. The state space

is chosen such that x ∈ X ⊂ R
12 = {x = [x⊤1 x⊤2 ]

⊤ | x1 ∈
N , x2 ∈ M }, where N = (−π,π)6 and M = { x2 ∈
R

6 | |x2| < M < ∞} such that M > 0 is a positive scalar.

One of the difficulties of biped control is ensuring that

the contact with the ground is the expected one in the

presence of perturbation. To correctly check the behavior

of the controller in simulation, a general model able to deal

with any condition of contact is used for simulation. The

model (11) is used to define the control with the assumption

that a flat contact occurs between the stance foot and the

ground. This simulation model includes a unilateral contact

between the foot and the ground with contact points, at

both the heel and the toe, of each foot. Various solutions

exist to determine the contact of each corner of the foot

with the ground. The contact forces between the foot and

the ground reaction are calculated using a constraint-based

approach. This approach belongs to the family of time-

stepping approaches. Let the vector R ∈R
8 be the reaction

force vector, which is obtained by stacking the reaction force

vectors of the two corners of each foot. Vector Rk at t = tk
is expressed at each sampling period as a function of the

generalized position vector qk ∈R
9 composed of the variable

orientation of each link and the Cartesian coordinates xh, yh

of the hips, the associate velocity vector qk
v ∈ R

9 for the

biped and Γk with an algebraic equation

G(Rk,q
k
,qk

v ,Γ
k) = 0 (12)

Let vector vk+1
in be the Cartesian velocities of the corners

in contact with the ground at t = tk+1. The normal compo-

nents must be non negative to avoid interpenetration. The

identity vk+1
in = 0 means that the contact remains and the

inequality vk+1
in > 0 means that the contact vanishes. The

normal components rk
in > 0 of Rk, when contact occurs, are

also subject to non negative constraints. These components

can avoid interpenetration but they cannot avoid the stance

foot take-off. It is clear that the variables vk+1
in and rk

in are

complementarity quantities:

vk+1
in ≥ 0 ⊥ rk

in ≥ 0 (13)

Furthermore, the variables vk+1
in and rk

in are subject to con-

straints imposed by friction which leads to a linear com-

plementarity condition. The valid cases of contact for each

corner are determined using constrained optimization [26].

A. Pre-feedback and Reference Trajectory

The cyclic walking gait, which is composed of single

support phases and impacts, has been defined by xd
1(t), xd

2(t)
and ẋd

2(t) satisfying the conditions of contact using off-

line optimization [27]. This means that if the tracking of



Fig. 1. Seven-link bipedal robot.

this reference trajectory is perfect, the stance foot neither

rotates nor takes off since the ZMP of the biped lies within

the interior of the support polygon defined by the foot

geometry. Furthermore there is no slipping of the stance foot

on the ground. The torques and velocities of the actuators

are bounded by given values. As a consequence, when the

fully actuated biped adopts this cyclic walking gait, no

zero dynamics appear. The reference walking minimizes the

integral of the norm of the torque vector for a given distance.

The walking velocity is selected to be 0.5 m/s. The duration

of one step is 0.53 s. Since the impact is instantaneous and

passive, the control law is defined only during the single

support phase. The objective of the control is that each joint

angle follows its reference trajectory to track cyclic walking

gait. The torque vector ΓΓΓ is defined based on the dynamic

model (10) as follows:

Γ = D(x1)(ẋ
d
2(t)+u)+C(x1,x2)+G(x1) (14)

where u is defined by (2). The pre-feedback (14) enables the

system (10) to be transformed into the form (1), thereby ren-

dering the tuning rules (3) applicable to the biped problem.

V. NUMERICAL SIMULATION

Numerical results for a fully actuated biped are included

in this section.

A. Robust Walking Cycles

The model (11) is utilized in this section to show nu-

merical simulations of a stable walking gait by achieving

a finite settling time via the tuning rules (3). The desired

convergence time for tracking the reference trajectories is

defined to be 0.5 s.

The robustness of the tracking control (14) is verified by

introducing a resultant disturbance force Fω on the hip joint

of the biped with projections Fxω = 50 N and Fyω = 2.5 N in

the horizontal and vertical planes respectively. Such a force

is used for the duration of 0.07 s to simulate a disturbance

effect. The effect of Fxω represents a disturbance in the

continuous phase of the dynamics (10) as it starts from 1.08 s

Fig. 2. Foot height in the walking gait with 0.5 s settling time

in the first cycle of the biped which belongs to the continuous

phase of the trajectory.

The effect of the aforementioned disturbance force on the

hip joint can be studied via the principle of virtual work as

follows. Let a disturbance force Fω be applied as mentioned

above. Let the effect of the disturbance force Fω on the

dynamics of the generalized coordinates q be denoted by

ΓΓΓω = J⊤Fω where J is such that J x2 is the velocity of the

hip, the point where the force is applied, where

J⊤ =
















l1cosq1 − l2cos(q1 +q2) l1sinq1 + l2sin(q1 +q2)
−l2cos(q1 +q2) l2sin(q1 +q2)

0 0

0 0

0 0

0 0

















(15)

Here l1 and l2 are the lengths respectively of the shin and

the thigh. Hence, the biped model (10) can be revised as

follows:

q̈ = D−1 (ΓΓΓ+ΓΓΓω −C(q, q̇)−G(q)) (16)

It can be seen from the above that the quantity ΓΓΓω appears

as a disturbance in the q̈ dynamics. In the following, an a

priori known upper bound

N , sup
t≥0

|D−1ΓΓΓω |= 19.2 (17)

is utilized by the tuning rules (3) to cover the worst effect

produced by the disturbance force Fω while tuning the gains

µ1,µ2 for each joint. Thus, the modeling information utilised

for the control synthesis (14) lies in the use of model matrices

D,C,G and the a priori known upper bound (17).

Next, tuning rules (3) are used to produce a continuous

controller with gains µ1 = 20, µ2 = 25,µ3 = µ1 and with

the scalar α = 0.7. Figure 2 shows the heights of the feet

for eight consecutive steps with the selected gains. The

corresponding velocities of the feet in the horizontal and



Fig. 3. Foot velocity in the horizontal direction in the walking gait with
0.5 s settling time

Fig. 4. Foot velocity in the vertical direction in the walking gait with 0.5 s

settling time

vertical direction can be seen in Figs. 3 and 4 respectively.

Legends ‘P1’ and ‘P3’ represent the ‘toe’ of the right and left

foot respectively. Similarly, ‘P2’ and ‘P4’ represent the ‘heel’

of the right and left foot respectively. The control torques

produced by SOSM synthesis are shown in Fig. 7.

Periodic orbits in joints 1 and 2 are depicted in terms

of phase-plane plots of qi, q̇i, i = 1,2 in Fig. 5. It can be

seen that each joint velocity undergoes a jump at the time

of collision of the feet with the walking surface and that the

actual trajectory follows the reference trajectory closely due

to the robust SOSM control.

B. Robustness Analysis

The effect of the disturbance force can be seen in several

plots. For example, the velocity in the vertical direction for

the right foot is severely affected by the disturbance as can

be seen from the high amplitude impulse like change at the

end of the first step (see Fig. 4). This is the result of the

combination of the disturbance forces Fxω and Fyω The effect

Fig. 5. Periodic orbit in joint 1 and 2 in walking gait

Fig. 6. Periodic orbit in joint 1 and 2 as a function of time

Fig. 7. Torques in joints 1 and 2 with their saturation limits



on the biped is a destabilizing one in the continuous phase

also. This can be seen in the plot of velocity of the left foot in

the vertical direction as it gets affected in its flight in the next

step as shown by an abnormal impulse (or stumbling) at the

end of the step Fig. 4. This undesired behaviour disappears

due to the robustness of the control and the biped returns to

its nominal desired gait as can be seen from Figs. 2, 4 and

subsequent orbits in Figs. 5 and 7. The orbital trajectories

against time are shown in Fig. 6 where it can be clearly

seen that the joint velocity and position return to the nominal

trajectory after the disturbance disappears.

VI. CONCLUSIONS AND FUTURE WORK

A robust continuous second order sliding mode controller

is utilised along with corresponding tuning guidelines to

achieve a finite settling time for the tracking error dynamics

of a fully actuated biped robot. The results give straight-

forward engineering guidelines to achieve stable walking

of a biped. Each joint follows its reference trajectory in

finite time before the next impact occurs with the ground,

thereby producing a stable periodic orbit in this non-linear

system. Numerical results are presented to show reference

trajectory planning, robustness of the non-linear synthesis

and ease of tuning. If a premature disturbance such as that

caused by a severely uneven or slippery surface, which

cannot be rejected, occurs before the control reaches this

reference trajectory there is no guarantee that the biped does

not fall down. Potential future directions include the study

of theoretical conditions of stability of the system in the

presence of parasitic dynamics and attainment of similar

results for under-actuated bipeds.
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