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SUMMARY

Some phages encode anti-CRISPR (acr) genes,
which antagonize bacterial CRISPR-Cas immune
systems by binding components of its machinery,
but it is less clear how deployment of these acr genes
impacts phage replication and epidemiology. Here,
we demonstrate that bacteria with CRISPR-Cas
resistance are still partially immune to Acr-encoding
phage. As a consequence, Acr-phages often need to
cooperate in order to overcome CRISPR resistance,
with a first phage blocking the host CRISPR-Cas im-
mune system to allow a second Acr-phage to suc-
cessfully replicate. This cooperation leads to epide-
miological tipping points in which the initial density
of Acr-phage tips the balance from phage extinction
to a phage epidemic. Furthermore, both higher levels
of CRISPR-Cas immunity and weaker Acr activities
shift the tipping points toward higher initial phage
densities. Collectively, these data help elucidate
how interactions between phage-encoded immune
suppressors and the CRISPR systems they target
shape bacteria-phage population dynamics.

INTRODUCTION

Bacteriophages (phages) are highly abundant in virtually all envi-

ronments and are thought to play a key role in shaping the ecol-

ogy and evolution of their bacterial hosts (Koskella and Brock-

hurst, 2014; Weitz, 2015; van Houte et al., 2016a). In response

to phage predation, many bacteria evolved defense mecha-

nisms that provide protection against phage predation (Labrie

et al., 2010), including many with molecular mechanisms that

are only starting to be understood (Makarova et al., 2011; Gold-

farb et al., 2015; Doron et al., 2018). The observation that phages

persist in the environment in spite of these host defenses is likely

due to a combination of ecological and evolutionary processes

(Thompson, 2005). One factor that is important in this context

is the evolution of phage genes that can specifically block host

defenses (Samson et al., 2013). For example, approximately
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half of the sequenced bacterial genomes encode CRISPR-Cas

immune systems (Grissa et al., 2007; Makarova et al., 2015),

and in response, many phages have evolved anti-CRISPR (acr)

genes that inhibit the CRISPR immune response (Bondy-Den-

omy et al., 2013; Pawluk et al., 2014; Pawluk et al., 2016a).

However, the conditions and extent to which these immunosup-

pressive genes allow phages to persist in the face of bacteria

with CRISPR resistance have remained unclear.

CRISPR-Cas immune systems provide defense against phage

infection by inserting phage-derived sequences (spacers) into

CRISPR loci on the host genome (Barrangou et al., 2007). The

evolution of CRISPR resistance is determined both by the abun-

dance of phage genome fragments in the cell that serve as

substrates for spacer acquisition as well as the relative fitness

advantage of bacteria with newly acquired spacers (Levin,

2010; Swarts et al., 2012; Datsenko et al., 2012; Hynes et al.,

2014; Levy et al., 2015; Westra et al., 2015; Künne et al., 2016;

Semenova et al., 2016; Severinov et al., 2016). Following the

acquisition of novel spacers, processed transcripts of CRISPR

loci guide CRISPR-associated (Cas) surveillance complexes

and effector nucleases to detect and destroy complementary

genomes of re-infecting phages (Brouns et al., 2008; Garneau

et al., 2010). In some natural populations and experimental sys-

tems, phages can coexist for relatively long periods of time with

their bacterial hosts despite the evolution of CRISPR resistance

(Weinberger et al., 2012; Paez-Espino et al., 2013, 2015; Levin

et al., 2013; Sun et al., 2016;), whichmay be explained by incom-

plete immunity provided by some CRISPR-Cas systems (Levin

et al., 2013), phage coevolution with CRISPR-resistant hosts

(i.e., escaping CRISPR resistance through the evolution of point

mutations in the sequences that are targeted on the phage

genome) (Deveau et al., 2008; Semenova et al., 2011; Childs

et al., 2012; Iranzo et al., 2013), the loss of CRISPR resistance

in some bacterial clones in the population (Weissman et al.,

2018), or the immigration of sensitive hosts into the CRISPR-

resistant population (Chabas et al., 2016, reviewed in Westra

et al., 2016). However, in other cases, the evolution of CRISPR

resistance causes rapid phage extinctions, particularly if

CRISPR-Cas immune systems generate high population-level

spacer diversity, which is difficult for the phage to overcome

by point mutation (Childs et al., 2014; van Houte et al., 2016b;

Morley et al., 2017). In this context, acr genes can provide a
ed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. CRISPR-Cas Confers Partial Immu-

nity to Acr-Phages

(A) Efficiency of plaquing (EOP) of DMS3vir (white

bars) on PA14 WT (completely sensitive to

DMS3vir), BIM2 (one spacer targeting DMS3vir),

and BIM5 (four spacers targeting DMS3vir); EOP

of DMS3mvir (black bars), DMS3mvir-AcrIF1 (red

bars), and DMS3mvir-AcrIF4 (blue bars) on PA14

WT (one spacer targeting DMS3mvir, DMS3mvir-

AcrIF1, and DMS3mvir-AcrIF4), BIM2 (two spacers

targeting DMS3mvir, DMS3mvir-AcrIF1, and

DMS3mvir-AcrIF4), and BIM5 (five spacers target-

ing DMS3mvir, DMS3mvir-AcrIF1, and DMS3mvir-

AcrIF4). Data correspond to the mean of six inde-

pendent replicate experiments. Error bars represent

95% confidence intervals (CI).

(B) Fitness of bacteria with CRISPR resistance (PA14 WT, BIM2, and BIM5) relative to a phage-sensitive CRISPR-KO strain in the absence of phage (green data

points) or in the presence of phage DMS3mvir-AcrIF1 (red data points) or phage DMS3mvir-AcrIF4 (blue data points). Data correspond to the mean of six in-

dependent replicate experiments; error bars represent 95% CI.

See also Figure S1.
critical benefit to the phage by antagonizing the CRISPR immune

systems of their bacterial hosts (van Houte et al., 2016b).

All Acrs characterized to date function by inhibiting either

the CRISPR surveillance complexes or the effector nucleases

(Bondy-Denomy et al., 2015; Pawluk et al., 2016b, 2017; Wang

et al., 2016a, 2016b; Chowdhury et al., 2017; Dong et al.,

2017; Guo et al., 2017; Harrington et al., 2017; Hynes et al.,

2017; Peng et al., 2017; Rauch et al., 2017; Shin et al., 2017;

Yang and Patel, 2017; Hong et al., 2018). These acr genes

were first identified in temperate Pseudomonas phages

(Bondy-Denomy et al., 2013) and can rescue phage from

CRISPR-mediated extinction (van Houte et al., 2016b). However,

previously reported data suggests that their ability to block

CRISPR resistance is imperfect and that some Acrs are more

potent than others (Bondy-Denomy et al., 2013). For example,

phages encoding AcrIF1 had greater levels of infectivity on

CRISPR resistant hosts compared to phages encoding AcrIF4,

but in all cases, Acr-phage infectivity was highest on hosts lack-

ing CRISPR-Cas immunity (Bondy-Denomy et al., 2013). While

these data suggest that CRISPR immunity provides partial resis-

tance against Acr-phage infection, it has remained unclear how

these patterns of partial resistance impact the ability of Acr-

phages to replicate and amplify. Here, we demonstrate that

Acr-phages need to cooperate in order to overcome partial resis-

tance of CRISPR immune hosts. This requirement for coopera-

tion has important epidemiological consequences as it causes

Acr-phages to be driven extinct if their initial titers are below a

critical threshold value but allows them to amplify when their ti-

ters exceed this threshold.

RESULTS

CRISPR-Cas Confers Partial Immunity to Acr-Phages
To investigate the consequences of the partial resistance of

CRISPR immune bacteria against Acr-phages (Figure S1A), we

expressed AcrIF1 (from phage JBD30) and AcrIF4 (from phage

JBD26) in an isogenic phage DMS3mvir background, which

lacks an endogenous AcrIF but is closely related to both parental

phages (91%and 80%pairwise sequence identity, respectively).
Consistent with previous observations (Bondy-Denomy et al.,

2013), efficiency of plaquing (EOP) assays with DMS3mvir-

AcrIF1 and DMS3mvir-AcrIF4 confirmed partial immunity of

P. aeruginosa strain UCBPP-PA14 (WTPA14) hostswith CRISPR

resistance to these Acr-phages and demonstrated that Acrs

differ in their ability to block CRISPR resistance, with AcrIF1 be-

ing a more potent suppressor of CRISPR resistance than AcrIF4

(Figure 1A). As expected, EOPs of Acr-phages on wild-type (WT)

hosts were higher compared to ancestral phage DMS3mvir,

which is a priori targeted by one spacer of the WT PA14

CRISPR-Cas system but lower than those of phage DMS3vir,

which is not a priori targeted by the WT PA14 CRISPR-Cas sys-

tem (Figure 1A). Furthermore, EOPs decreased when hosts car-

ried two or five (hereafter named BIM2 and BIM5 [bacteriophage

insensitive mutant]) targeting spacers, presumably because this

increases the proportion of surveillance complexes that target

the phage (in addition to the targeting spacers, all bacteria

encode 35 non-targeting spacers). Furthermore, competition be-

tween bacteria with CRISPR resistance and sensitive bacteria

showed that, in the presence of Acr-phages, CRISPR resistance

provides a fitness advantage (Figure 1B; F1,53 = 193.98, p <

0.0001), which is consistent with the observation that targeting

spacers provide partial resistance to Acr-phages.

The Initial MOI of Acr-Phages Determines the
Epidemiological Outcome
While full CRISPR resistance can drive phages extinct (van

Houte et al., 2016b), the phage epidemiology associated with

partial resistance to Acr-phages is unclear. We explored this

by measuring phage amplification following infection of hosts

with CRISPR resistance. Whereas phages always reached

similar titers when amplified for 24 hr on CRISPR-KO (knockout)

hosts, independent of the initial phage amount (Figures 2A–2C),

phage amplification on WT bacteria (one targeting spacer) was

dependent on the initial phage amount, with phage DMS3mvir

amplifying exclusively beyond a threshold of around 106 pla-

que-forming units (pfus), corresponding to an approximate mul-

tiplicity of infection (MOI) of 10�2 (Figures 2D–2F). For the Acr-

phages, this effect was even stronger on BIM2 (two targeting
Cell 174, 908–916, August 9, 2018 909



Figure 2. The Initial MOI of Acr-Phage Determines the Epidemiological Outcome

(A–L)Viral titers at 24 hr post-infection (hpi) with DMS3mvir (A, D, G, and J), DMS3mvir-AcrIF1 (B, E, H, and K), or DMS3mvir-AcrIF4 (C, F, I, and L) of PA14

CRISPR-KO (A–C), WT (D–F), BIM2 (G–I), or BIM5 (J–L). Gray circles indicate the phage titers at the start of the experiment (corresponding to the addition of 104,

105, 106, 107, or 108 pfus). Colored data points represent phage titers at 24 hpi; each data point represents an independent biological replicate (n = 6). The limit of

detection is 200 pfu/ml.

See also Figure S2.
spacers) and BIM5 (five targeting spacers) hosts, revealing

epidemiological tipping points that depend both on the level of

host resistance and the strength of the Acr (Figures 2G–2L).

DMS3mvir-AcrIF1 could only cause an epidemic on BIM2 if the

initial amount of phage exceeded a threshold of �105 pfus, cor-

responding to an MOI of 10�3, and was driven extinct below this

threshold (Figure 2H), and for DMS3mvir-AcrIF4, approximately

100-fold more phage was necessary to cause an epidemic

(Figure 2I). On BIM5, the tipping point shifted to approximately

10-fold higher phage titers for both Acr-phages (Figures 2K

and 2L). Similar experiments with the parental phages JBD26

and JBD30 revealed a qualitatively similar correlation between

EOPs and phage amplification patterns on bacteria with CRISPR

resistance (one newly acquired targeting spacer) (Figure S1),
910 Cell 174, 908–916, August 9, 2018
with a relatively low EOP and clear amplification threshold for

JBD26 (Figures S1A and S1D) and relatively high EOP and

no clear amplification threshold for JBD30 (Figures S1A and

S1E). However, unlike the DMS3mvir-based isogenic mutants,

JBD26 and JBD30 also displayed CRISPR-independent varia-

tion in their epidemiological dynamics (Figures S1B and S1C),

suggesting that differences in the amplification patterns of

JBD26 and JBD30 on CRISPR-resistant hosts are unlikely to

be solely due to their different Acrs.

Epidemiological Tipping Points in Acr-Phage
Amplification Are Not Due to Phage Evolution
Given that DMS3mvir-AcrIF1 and DMS3mvir-AcrIF4 epidemics

often required the bacterial cultures to be infected with higher



Figure 3. Acr-Phage Amplification Is Density Dependent

(A) Fold phage amplification at 24 hpi with 106 pfus DMS3mvir (black data

points) or DMS3mvir-AcrIF1 (red data points) of PA14 CRISPR-KO (sensitive)

or BIM2 under either high phage densities (HPD, 6 mL culture) or low phage

densities (LPD, 600 mL culture).

(B) Fold phage amplification at 24 hpi with 108 pfus DMS3mvir (black data

points) or DMS3mvir-AcrIF4 (blue data points) of PA14 CRISPR-KO (sensitive)

or BIM2 under either HPD or LPD.

(C) Fold phage amplification at 24 hpi with 107 pfus DMS3mvir (black data

points) or DMS3mvir-AcrIF1 (red data points) of PA14 CRISPR-KO (sensitive)

or BIM5 under either HPD or LPD.

(D) Fold phage amplification at 24 hpi with 108 pfus DMS3mvir (black data

points) or DMS3mvir-AcrIF4 (blue data points) of PA14 CRISPR-KO (sensitive)

or BIM5 under either HPD or LPD; each data point represents an independent

biological replicate (n = 6). The limit of detection is 200 pfu/ml.

See also Figure S3 and Table S1.
amounts of phages, we hypothesized that they might be caused

by rare phagemutants that ‘‘escape’’ (partial) CRISPR resistance

due to mutations in their target sequence (protospacer) (Antia

et al., 2003; Deveau et al., 2008; Semenova et al., 2011; Levin

et al., 2013; van Houte et al., 2016b). To test this, we re-

sequenced the genomes of phage populations that were iso-

lated from the observed epidemics on WT, BIM2, and BIM5

following infection with 108 pfus, corresponding to an MOI of 1

(i.e., from Figures 2D–2F, 2H, 2I, 2K, and 2L). This showed that
the epidemic caused by control phage DMS3mvir on WT bacte-

ria was indeed caused by phage that carried a mutated

protospacer (i.e., mutation in the seed and protospacer adjacent

motif [PAM] region) (Figure S2A). However, in the context of

Acr-phages, we found only one example, namely that of

DMS3mvir-AcrIF4 on WT bacteria, where the epidemic was

associated with a protospacer mutation (Figure S2A). For all

other Acr-phage epidemics, protospacer SNP frequencies

were similar to those of the ancestral phage (Figure S2A). In

these cases, we could also not detect any differences in the abil-

ity of evolved and ancestral phages to amplify on the hosts with

CRISPR resistance they were isolated from (Figure S2B). There-

fore, unless the Acr is weak and the host carries only one spacer,

phage evolution cannot explain the observed epidemiological

tipping points of Acr-phages.

Acr-Phage Amplification Is Density Dependent
Having ruled out that the observed tipping points by Acr-phages

are the result of escape-phage evolution, we hypothesized that

the density of Acr-phages may determine the observed tipping

points. To test this hypothesis, we examined whether amplifica-

tion of Acr-phages was density dependent without altering the

initial amount of phages. This was done by measuring amplifica-

tion of the same initial amount of phages on different volumes

of bacterial host culture, generating a high phage-density

(HPD) condition (small volume), and a low phage-density (LPD)

condition (large volume). Phage amplification was greater on

CRISPR-KO hosts under LPD conditions compared to HPD con-

ditions, simply because the bacterial densities are constant

across the treatments and the large volume therefore contains

proportionally more bacteria on which the phage can replicate

(Figure 3; Table S1; F1,47 = 64.79, p < 0.0001). However, when

Acr-phages were amplified on hosts with CRISPR resistance

(BIM2 or BIM5), the greatest level of amplification was observed

under HPD conditions (Figure 3; Table S1; F1,47 = 47.17, p <

0.0001), demonstrating that Acr-phage amplification is indeed

positively density dependent. Furthermore, the level of amplifi-

cation of Acr-phages on a host with CRISPR resistance was in-

dependent of the presence of high amounts of phage DMS3mvir,

which lacks an acrIF gene, demonstrating that the observed

density dependence is specifically linked to the density of acr

genes and cannot be explained by saturation of CRISPR-Cas

complexes with targeted phage genomes (Figures S2C–S2F).

Consistent with Acr-phages only being able to successfully over-

come CRISPR resistance at high phage densities, we observed

at 2 days post-infection (dpi) an invasion of bacteria with surface-

based resistance under high Acr-phage-density treatments,

which was accompanied by a reduction in relative fitness of

CRISPR-resistant bacteria (Figure S3; F1,17 = 48.9, p < 0001).

Epidemiological Tipping Points Can Result from
Cooperation between Sequentially Infecting Acr-
Phages
The observed density-dependent phage amplification sug-

gested that Acr-phages may cooperate in order to successfully

amplify. For example, if co-infections were required to effectively

suppress host resistance, epidemiological tipping points could

correspond to parasite densities where co-infections become
Cell 174, 908–916, August 9, 2018 911



Figure 4. Epidemiological Tipping Points

Can Result from Cooperation between

Sequentially Infecting Acr-Phages

(A) Infection model of the Acr-phage (see details of

the model in STARMethods). The parameter H(t) =

aV(t) refers to the rate at which bacteria are in-

fected by free phage particles.

(B) Effect of initial Acr-phage inoculum density on

the phage density at 24 hpi for different values of

Acr efficacy (purple, f = 0.65; magenta, f = 0.55;

green, f = 0.35); other parameter values:B = 5, a =

0.001, r = 0.7, g = 20.

(C) Effect of initial Acr-phage inoculum density on

the phage density at 24 hpi for different values of

CRISPR efficacy (r = 0.5, 0.7, and 0.75; purple,

magenta, green, respectively); other parameter

values: B = 5, a = 0.001, f = 0.6, g = 20.

(D) Effect of initial Acr-phage inoculum density

on the phage density at 24 hpi for different values

of the duration of the immunosuppressive state

(g = 0.1, 100, and 1,000; purple, magenta, green,

respectively); other parameter values: B = 5, a =

0.001, f = 0.65, r = 0.7. In all graphs, gray lines

correspond to the initial amount of phage, and

values below this line indicate a lack of phage

amplification.

See also Figure S4.
common (Regoes et al., 2002). However, this hypothesis is un-

likely to explain our results because the tipping points occurred

at MOI values where co-infections are expected to be rare (Fig-

ure 2). To explore what factors may cause the observed epidemi-

ological tipping points at low MOIs and in the absence of phage

evolution, we generated a theoretical model (see STARMethods

for a detailed description of the model and the differential equa-

tions). Given that we aimed to understand how the observed

epidemiological tipping points could emerge without escape-

phage evolution, we modeled CRISPR-phage population dy-

namics using fixed bacterial and phage genotypes. In the model,

we can manipulate both the efficacy r of CRISPR resistance in

the bacteria (r increases with the number of spacers targeting

the phage) as well as the efficacy f of Acr in the phage (consis-

tent with the EOPdata). In this form, themodel predicts that upon

infection of 106 bacteria with CRISPR resistance, phages ex-

pressing a strong Acr can always amplify, regardless of the initial

phage density (Figure S4, f = 0.67, purple line), whereas phages

with aweak Acr can never amplify (Figure S4,f = 0.6 andf = 0.5,

magenta and green lines, respectively; gray lines correspond to

the initial amount of phage, and values below this line indicate a

lack of phage amplification). Given that these model predictions

are inconsistent with our experimental data, we then extended

the model by incorporating the assumption that during failed in-

fections, some Acr proteins are produced that cause the surviv-

ing host to enter a ‘‘suppressed’’ state (S). This immunosuppres-

sion decreases the efficacy of host resistance and allows

following phages to exploit these bacteria (Figure 4A). Crucially,

if the immunosuppressed state is assumed, the model predicts

epidemiological tipping points and, in accordance with our

empirical data, these tipping points occur at MOIs far below 1

(Figure 4B). Besides, our experimental observations that the po-
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sition of the tipping points shifts when Acrs are weaker or host

resistance is stronger (Figure 2) are fully explained by our model

when we vary the effect of the efficacy f of the Acr in the phage

(Figure 4B) or the efficacy r of CRISPR resistance in the bacteria

(i.e., the number of spacers in the host targeting the phage; Fig-

ure 4C). Moreover, longer periods of immunosuppression shift

the tipping points to lower phage densities, as it increases the

probability that a host will be re-infected when it is still in the im-

munosuppressed state (Figure 4D, indicated by g). This model

therefore predicts that Acr-phage infections can cause bacteria

with CRISPR resistance to become immunosuppressed, allow-

ing cooperation between sequentially infecting Acr-phages to

overcome CRISPR immunity, which is a critical factor in deter-

mining whether Acr-phages can amplify.

Unsuccessful Infections by Acr-Phages Cause Hosts
with CRISPR Resistance to Become Immunosuppressed
To validate this model, we tested the key assumption that unsuc-

cessful infections by Acr-phages cause hosts with CRISPR

resistance to become immunosuppressed. To this end, we

pre-infected BIM2 and BIM5 with Acr-phages at a low MOI

(�0.3) and subsequently washed away all remaining phages

from the culture. We then measured the relative transformation

efficiency (RTE) of the surviving cells by transforming pre-in-

fected bacteria with either a CRISPR-targeted plasmid (T) or a

non-targeted plasmid (NT). For all phage treatments, the RTE

of pre-infected CRISPR-KO bacteria and no-phage controls

were not significantly different, as expected (Figure 5; Table

S2; F1,51 = 1.12, p = 0.35). However, when BIM2 or BIM5 were

pre-infected with phage DMS3mvir-AcrIF1, the RTE increased

significantly compared to the DMS3mvir and no-phage

controls (Figure 5; Table S2; BIM2: F1,17 = 26.82, p < 0.0001;



Figure 5. Unsuccessful Infections by Acr-Phages Cause Hosts with

CRISPR Resistance to Become Immunosuppressed

(A) Relative transformation efficiencies (RTE) of CRISPR-KO (gray data points)

or BIM2 (purple data points) pre-infected with 1.6 3 109 pfus of either

DMS3mvir, DMS3mvir-AcrIF1, or DMS3mvir-AcrIF4 or not phage infected.

Each data point represents an independent biological replicate (n = 6).

(B) RTE of CRISPR-KO (gray data points) or BIM5 (purple data points) pre-

infected as described for (A). Each data point represents an independent

biological replicate (n = 7). In addition, we show the mean and 95%CI for each

treatment.

See also Figure S5 and Table S2.
BIM5: F1,20 = 20.16, p < 0.0001), demonstrating lasting immuno-

suppression of hosts with CRISPR resistance following an un-

successful infection with Acr-phages. Consistent with its weaker

Acr activity, lasting immunosuppression following infection with

DMS3mvir-AcrIF4 was only observed in BIM2 (Figure 5; Table

S2; F1,17 = 5.26, p < 0.05) and not in BIM5 (F1,20 = 2.07, p = 0.15).

DISCUSSION

The discovery of acr genes has been a major breakthrough in

CRISPR-Cas research (Bondy-Denomy et al., 2013). Much prog-

ress has beenmade toward biochemical characterization of Acrs

and the unraveling of their molecular mode of action. Here, we

studied the population dynamics associated with CRISPR-Acr

interactions and demonstrated that the initial density of Acr-

phages that infect bacteria with CRISPR resistance determines

whether phages go extinct or amplify. Our data and theory offer

a parsimonious explanation for these epidemiological tipping

points based on long-term suppression of CRISPR resistance

following an unsuccessful infection, which is consistent with

the slow dissociation kinetics of Acr-Cas protein complexes

(Chowdhury et al., 2017). During the initial stages of infection,

Acr-phage densities decline due to the high proportion of unsuc-

cessful infections (Figures S5A and S5B). However, as the den-

sities of immunosuppressed hosts increase, a greater proportion

of infections becomes successful. If the initial densities of Acr-

phages are high enough, densities of immunosuppressed hosts

reach a critical threshold where the amount of new Acr-phages

that are produced from successful infections outweighs the
loss of Acr-phages due to unsuccessful infections, causing the

epidemic to take off (Figure S5B). If this critical threshold is not

reached, the Acr-phages go extinct, and immunosuppressed

hosts revert to their resistant state (Figure S5A).

We ruled out that the need for high Acr-phage densities is sim-

ply linked to the evolution of phage escape mutations. When

phages lack acr genes, escape mutations are known to be an

important determinant for phage persistence in the face of

CRISPR-resistant bacteria (Deveau et al., 2008; Semenova

et al., 2011; Weinberger et al., 2012; Paez-Espino et al., 2013,

2015), provided the CRISPR-resistant clones carry a single

spacer (Levin et al., 2013) and the diversity of single spacer

clones in the bacterial population is low (Iranzo et al., 2013;

Childs et al., 2014, van Houte et al., 2016b). While escape muta-

tions in Acr-phages were not required for phage amplification at

high phage densities, they were still found to emerge when the

Acr was weak and the host carried only one spacer. Evolution

of escape mutants may therefore contribute to Acr-phage

persistence in nature where phages exist in populations that

are often genetically more heterogeneous than the initially clonal

populations used in our experiments.

When phages overcome CRISPR resistance, natural selection

likely favors the evolution of alternative host defense mecha-

nisms (van Houte et al., 2016a). Indeed, we observed that

bacteria carrying two spacers targeting phage DMS3vir-

AcrIF1 evolved surface-modification-based resistance at 2 dpi

when exposed to high Acr-phage densities but retained their

CRISPR-resistance phenotype when exposed to low Acr-phage

densities (Figure S3). As expected, this was associated with a

decreased fitness of the bacteria with CRISPR resistance rela-

tive to those with surface-modification-mediated resistance at

high but not at low Acr-phage densities (Figure S3). In nature,

bacteria inevitably have greater access to genes encoding for

alternative defense strategies that may be selected instead of

CRISPR-Cas or in combination with CRISPR-Cas to provide

synergistic levels of resistance, as was found to be the case

for CRISPR-Cas and restriction-modification (Hynes et al.,

2014). Similarly, phage-encoded acr genes may drive the evolu-

tion of multiple CRISPR subtypes being encoded by the same

host to provide functional redundancy, explaining why hosts

often need a diversified defense arsenal.

The artificial lab media used in our experiments inevitably

lacks much of the biotic and abiotic complexity found in natural

environments. For example, in natural environments, different

CRISPR genotypes often coexist (Andersson and Banfield

2008), whereas in our experiments, we studied clonal popula-

tions of bacteria with CRISPR resistance. However, our theoret-

ical and experimental analyses suggest that the coexistence of

different CRISPR genotypes does not impact the observed

epidemiological dynamics of Acr-phages (Figures S5C–S5F).

Metagenomics analyses of bacteria-phage interactions in natural

communities will be essential to further map the evolutionary and

population dynamics of Acr-phages and their bacterial hosts.

Our experimental data suggest that the long-term immuno-

suppression following a failed infection by Acr-phages is an

important factor in determining Acr-phage population dynamics

and is cooperative in that it provides a benefit to Acr-phages

that sequentially infect the same host to overcome CRISPR
Cell 174, 908–916, August 9, 2018 913



resistance. Future studies aimedatmeasuring thecosts andben-

efits associated with phage-encoded acr genes and their natural

ecology will be critical to understanding the evolutionary drivers

of Acr-phage cooperation. Specifically, it is unclear whether last-

ing immunosuppression evolved because of the indirect fitness

benefits associatedwith the enhanced infection success of clone

mates in the population or whether it is primarily a by-product of

the direct individual-level benefits of suppressing the host im-

mune system (Sachs et al., 2004, West et al., 2007).

Positive density-dependent fitness effects, such as the one

observed here for Acr-phages, play an important role in various

ecological contexts, such as species invasions, extinctions, and

disease epidemics (Courchamp et al., 1999; Stephens and Su-

therland, 1999). Existing theory predicts that parasite density-

dependent tipping points in disease epidemics can occur

when the infection dynamics of an individual host depends on

the parasite dose, for example when there is a threshold in the

number of co-infecting parasites that are required to establish

a successful infection (Regoes et al., 2002). This work shows

that epidemiological tipping points can also take place under

conditions where parasite densities are too low for co-infections

to be common if unsuccessful infections leave behind an

immunosuppressed host. The profound epidemiological conse-

quences that were found to be associated with lasting immuno-

suppression in our empirical system warrant future studies to

explore whether similar effects play a role in the epidemiology

of other infectious diseases.
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Sequence analysis script This paper https://github.com/s-meaden/landsberger
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains
P. aeruginosa UCBPP-PA14 (referred to as WT, carrying one spacer targeting DMS3mvir, see Table S3), and derived P. aeruginosa

UCBPP-PA14 strains BIM2, BIM3, BIM4, and BIM5, and the strain P. aeruginosa UCBPP-PA14 csy3::LacZ (referred to as CRISPR-

KO, since it carries a disruption of an essential cas gene that causes the CRISPR-Cas system to be non-functional), and the

P. aeruginosa UCBPP-PA14 csy3::LacZ-derived surface mutant 1 (referred to as SM (Westra et al., 2015)) were used in all experi-

ments. Phage was amplified on P. aeruginosa UCBPP-PA14 csy3::LacZ. Cells were grown overnight at 37�C in either LB broth, or

M9 medium (22 mM Na2HPO4; 22 mM KH2PO4; 8.6 mM NaCl; 20 mM NH4Cl; 1 mM MgSO4; 0.1 mM CaCl2) supplemented with

0.2% glucose.

Virus strains
Temperate phages JBD26 and JBD30 were used in efficiency of plaquing experiments and infection assays in liquid medium and

have been previously described (Bondy-Denomy et al., 2013). Recombinant lytic phages DMS3vir, DMS3vir-AcrIF1, DMS3mvir,

DMS3mvir-AcrIF1 and DMS3mvir-AcrIF4 have been used in all experiments (described in Cady et al., 2012, Bondy-Denomy

et al., 2013, and van Houte et al., 2016b).

METHOD DETAILS

Evolution of P. aeruginosa PA14-derived BIMs
The P. aeruginosa UCBPP-PA14 BIM2 strain (referred to as BIM2, carrying two spacers targeting DMS3mvir, see Table S3) was

evolved during infection of P. aeruginosa UCBPP-PA14 with DMS3vir (Westra et al., 2015). P. aeruginosa UCBPP-PA14 BIM3

(referred to as BIM3, carrying three spacers targeting DMS3mvir), BIM4 (referred to as BIM4, carrying one newly acquired and

two pre-existing spacers targeting JBD26 and JBD30) and BIM5 strains (referred to as BIM5, carrying five spacers targeting

DMS3mvir) were generated by challenging P. aeruginosa UCBPP-PA14 BIM2 bacteria with escape phage in multiple rounds, giving

rise to BIM3, and finally BIM4 and BIM5.

Generation of recombinant phage
DMS3mvir-AcrIF4 phage was generated by homologous recombination with a plasmid-encoded acrIF4 gene (flanked by homology

arms) to replace the native acrIE3 gene of DMS3, as described in Bondy-Denomy et al., 2013, followed by truncation of the

c-repressor gene as described in Cady et al., 2012.

Efficiency of Plaquing assays
Efficiency of plaquing (EOP) assays were carried out on square polypropylene plates containing LB with 1.5% agar. A mixture of

molten soft LB agar (0.5%) and 300 mL of bacteria (grown overnight in M9 medium supplemented with 0.2% glucose) were poured

on top of the hard agar layer. Next, 5 mL of serially diluted phage was spotted on the resulting plates, which were subsequently incu-

bated overnight at 37�C and plaques were enumerated the next day.

Competition assays to measure fitness
Competition experiments were performed in glass vials in 6 mL M9 medium supplemented with 0.2% glucose. Competition exper-

iments were initiated by inoculating 1:100 from a 1:1 mixture of overnight cultures (grown in M9medium + 0.2% glucose) of the strain

with CRISPR resistance and either the sensitive CRISPR-KO strain or a CRISPR KO-derived surface mutant (described in Westra

et al., 2015). For the competitions between the strains with CRISPR resistance (WT, BIM2 or BIM5) and the sensitive CRISPR-KO

strain 104 plaque forming units (pfus) of either DMS3mvir-AcrIF1 or DMS3mvir-AcrIF4 phage was added to each glass vial.

At 0 and 24 hours after the start of the competition experiment samples were taken and cells were serially diluted in M9 salts

(22mMNa2HPO4; 22mMKH2PO4; 8.6 mMNaCl; 20mMNH4Cl) and plated on LB agar supplemented with 50 mg,ml-1 X-gal (to allow

discrimination between bacteria with CRISPR resistance (white) and sensitive CRISPR-KO (blue) bacteria). For all competitions, a

control competition experiment was performed in the absence of phage. For the competitions between bacteria with CRISPR resis-

tance (BIM3) and surfacemutants, 104, 105 or 106 pfus of DMS3vir-AcrIF1 phagewas added to each glass vial. At 0 and 48 hours after

the start of the competition experiment samples were taken and processed as above.

Analysis of bacterial evolution of resistance
For evolution of bacterial resistance experiments 6mL ofM9medium supplementedwith 0.2%glucosewere inoculated with approx-

imately 108 bacteria, and 600 mL was inoculated with approximately 1010 bacteria, from fresh overnight cultures of BIM3 (2 spacers

targeting DMS3vir-AcrIF1 phage). These cultures were infected with 104, 105, 106, 107, and 108 pfu of DMS3vir-AcrIF1 (Figure S3A) or

106 pfu of DMS3vir-AcrIF1 (Figure S3C), followed by incubation at 37�C and shaking at 180 rounds per minute (rpm). Cultures were

transferred 1:100 into fresh medium every 24 hours. Evolution of resistance was determined after 48 h by streaking individual clones

through DMS3vir and DMS3vir-AcrIF1. Surface modification was confirmed by colony morphology, broad-range resistance of
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colonies to DMS3vir phages carrying Acr genes, and lack of newly acquired spacers. CRISPR-Cas-mediated immunity was

confirmed by PCR using primers 50-CTAAGCCTTGTACGAAGTCTC-30 and 50-CGCCGAAGGCCAGCGCGCCGGTG-30 for CRISPR
array 1, and primers 50-GCCGTCCAGAAGTCACCACCCG-30 and 50-TCAGCAAGTTACGAGACCTCG-30 for CRISPR array 2.

Infection assays in liquid medium
Infection assays were performed in glass vials by inoculating 6mLM9medium supplemented with 0.2% glucose with approximately

108 colony forming units (cfus) bacteria from fresh overnight cultures (also grown in M9 medium + 0.2% glucose) of either the

CRISPR-KO, WT, BIM2 or BIM5 strain. To these microcosms 104, 105, 106, 107 or 108 pfus of either DMS3mvir, DMS3mvir-AcrIF1

or DMS3mvir-AcrIF4 phage were added. Microcosms were incubated at 37�C while shaking at 180 rpm. Phage was extracted at

24 hours after the start of the experiment by chloroform extraction on all samples (sample: chloroform 10:1 v/v), and phage titers

were determined by spotting isolated phage samples on a lawn of CRISPR-KO bacteria. For the experiment shown in Figures

S2C–S2F and S5F the same protocol was used but with 108 pfus DMS3mvir added to each treatment at the start of the experiment

(Figures S2D and S2F) or using a bacterial population that consisted of an equal mix of BIM2 and BIM5 (Figure S5F). For the infection

assays in which phage densities were manipulated by using different volumes of growth medium (Figure 3), glass vials containing

6 mL M9 medium supplemented with 0.2% glucose were used for the high phage-density (HPD) treatment. These were inoculated

with approximately 108 cfus of bacteria from fresh overnight cultures of the CRISPR-KO, BIM2 or BIM5 strains, as above. For the low

phage-density (LPD) treatment Duran 1L glass bottles containing 600 mL M9 medium supplemented with 0.2% glucose were used,

which were inoculated with approximately 1010 cfus of bacteria from the same overnight cultures. To both glass vials and bottles

phage was added (106 pfus of DMS3mvir-AcrIF1 or DMS3mvir for infection of BIM2; 107 pfus of DMS3mvir-AcrIF1 or DMS3mvir

for infection of BIM5; 108 pfus of DMS3mvir-AcrIF4 or DMS3mvir for infection of both BIM2 and BIM5). Glass vials and bottles

were incubated at 37�C while shaking at 180 rpm. Total phage was extracted at 24 hours after the start of the experiment and phage

titers were determined as described above.

Deep sequencing of phages
From the experiments shown in Figures 2D–2F, 2H, 2I, 2K, and 2L, phage was isolated at 24 hpi from the treatments that were in-

fected with 108 pfus of phage (MOI = 1). These phages were used for a new round of infection assays in liquid media (Figure S2B),

effectively following the methods described above, and for deep sequencing analysis (Figure S2A). To obtain sufficient material for

the latter, isolated phage was amplified on plate by infecting a lawn of the CRISPR-KO strain and harvesting phage by adding M9

salts solution and subsequent chloroform extraction. Phage samples from all replicates within a single treatment were pooled. As

controls, ancestral DMS3mvir, DMS3mvir-AcrIF1 and DMS3mvir-AcrIF4 phage were processed in parallel. Phage genomic DNA

extraction was performed with 600 mL sample at approximately 1012 pfu/ml using the Norgen phage DNA isolation kit, following

the manufacturer’s instructions. Barcoded Illumina Truseq Nano libraries were constructed from each DNA sample with an approx-

imately 350 bp insert size and 2 3 250 bp reads generated on an Illumina MiSeq platform. Reads were trimmed using Cutadapt

version 1.2.1 and Sickle version 1.200 and then overlapping reads merged using Flash version 1.2.11 to create high quality sequence

at approximately 8000 3 coverage of DMS3mvir per sample. These reads were mapped to the DMS3 reference genome (NCBI

RefSeq: NC_008717) using bwa mem version 0.7.12 and allele frequencies of single nucleotide polymorphisms within viral target re-

gions quantified using samtools mpileup version 0.1.19. Draft genomes were constructed using the ancestral sample sequences

which were randomly subsampled to 10000 reads per sample. Assembly was done using SPAdes version 3.5.0 run in ‘careful’

mode. Assemblies were visualized using Bandage version 0.8.1 and a single contig was extracted based on coverage. Contigs

were annotated using Prokka version 1.12.

Long-term immunosuppression experiment
For the long-term immunosuppression experiment (Figure 5) bacteria were transformed with plasmid pHERD30T and a pHERD30T-

derived plasmid that was a priori targeted by the PA14 WT Type I-F CRISPR-Cas system. This mutant plasmid pHERD30Ttarg was

generated by inserting a 32-nt protospacer sequence flanked by a GG protospacer adjacent motif (PAM) with full complementarity to

spacer 1 in CRISPR locus 2 of the PA14 WT Type I-F CRISPR-Cas system. This was done by ligation of T4 Polynucleotide Kinase

phosphorylated oligonucleotides that upon annealing create overhangs that are compatible with HindIII ligation (50-agctt
ACCGCGCTCGACTACTACAACGTCCGGCTGATGGa-30 and 50-agcttCCATCAGCCGGACGTTGTAGTAGTCGAGCGCGGTa-30,
HindIII overhangs in small caps, protospacer sequence in capitals and PAM underlined) in the HindIII-digested Antarctic phospha-

tase-treated pHERD30T vector. Suppression of CRISPR immunity by Acr was measured through a transformation assay. Overnight

cultures of CRISPR-KO, BIM2 or BIM5 bacteria (approximately 5*109 cfus) grown in LB broth were either not infected or infected with

1.6*109 pfus DMS3mvir, DMS3mvir-AcrIF1 or DMS3mvir-AcrIF4 in 50 mL Falcon tubes containing 10 mL of Luria-Bertani (LB) broth,

and incubated at 37�Cwhile shaking at 180 rpm for 2 hours. Bacteria were harvested by spinning at 3500 rpm for 30 minutes. A sam-

ple from the supernatant was used to quantify phage titers following chloroform extraction as described above (data not shown). The

bacterial pellet was further processed for the transformation assay. First, cells were washed twice in 1 mL of a 300 mM sucrose so-

lution to make them competent (Choi et al., 2006). Next, the pellet was resuspended in 300 mL of 300 mM sucrose, and 100 mL from

this was used for plating on LB agar to enumerate total bacterial cfus after the infection and sucrose-washing steps (data not shown).

Finally, the remaining 200 mL was divided in equal volumes over two eppendorf tubes, and used for electrotransformation with either
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plasmid pHERD30T (not targeted byCRISPR-Cas; NT) or pHERD30Ttarg (targeted by CRISPR-Cas; T). Electroporated bacteria were

resuspended in 1 mL LB broth and incubated 1h at 37�C at 180 rpm. Bacteria were then pelleted and resuspended in 100 mL LB and

plated on LB agar plates containing Gentamycin (50 mg,ml-1) and incubated for 16h at 37�C to allow transformants to grow.

Mathematical modeling
We developed the following epidemiological model to understand the dynamics of bacteriophages that carry an anti-CRISPRmech-

anism (Acr) in a host population with CRISPR resistance, with all simulations performed in Mathematica version 11.2.

Resistant bacteria may either be in their normal resistant state (the density of these bacteria is noted RðtÞ) or in an immunosup-

pressed state (the density of these bacteria is noted SðtÞ).
Initially the host population is homogeneous, consisting exclusively of bacteria with CRISPR resistance, and the density of these

resistant bacteria is Rð0Þ. Then an inoculum of free Acr-phage particles with density Vð0Þ is introduced in the host population. Free

Acr-phage particles adsorb to the bacteria at a rate a. When a free Acr-phage adsorbs to a bacterium with CRISPR resistance three

outcomes are possible:

(i) with probability r the Acr-phage genome is destroyed and there is no change in bacterial resistance (i.e., no immunosuppres-

sion). Hence, r is a measure of bacterial resistance and increases with the number of spacers targeting the phage,

(ii) with probability ð1� rÞf the Acr-phage genome is not destroyed because of Acr activity. In this case the infection therefore

leads to cell lysis, with the release ofB newAcr-phage particles. The efficacy of Acr activity is thusmeasuredwith f (the greater

f the higher the Acr efficacy is).

(iii) with probability ð1� rÞð1� fÞ, the Acr-phage fails to complete its lytic cycle but expresses some Acr before the Acr-phage

genome is cleaved, which blocks bacterial CRISPR resistance causing the bacterium to become immunosuppressed. This

state is reversible and immunosuppressed bacteria become resistant again at rate g.

If an immunosuppressed bacterium is infected by an Acr-phage, the absence of immunity allows the Acr-phage to complete its lytic

life cycle. This yields the following set of ordinary differential equations (see Figure 4A):

_RðtÞ= � ðað1� rÞVðtÞÞRðtÞ+g SðtÞ
_SðtÞ= að1� rÞð1� fÞVðtÞRðtÞ � ðg+ a VðtÞÞSðtÞ
_VðtÞ= að1� rÞfB VðtÞRðtÞ+ aB VðtÞSðtÞ � aðSðtÞ+RðtÞÞVðtÞ (1)

Initially there are no immunosuppressed bacteria around (i.e., Sð0Þ = 0) and if a few Acr-phage particles are introduced the Acr-

phage population will increase if the Acr activity is higher than a threshold value:

f>f0 =
1

ð1� rÞB (2)

In other words, when f is low and r is high the phage population cannot take off when the inoculum of the Acr-phage is small (Fig-

ures 4B and 4C).

Yet, if one introduces a sufficiently high density of Acr-phages they will shut down the immunity of the bacterial population and will

increase the density of immunosuppressed bacteria. At time T the following condition may be verified

f>f0

�
1� SðTÞ

RðTÞ ðB� 1Þ
�

(3)
and the Acr-phage population may thus take off for lower values o
f Acr activity. Conditions (2) and (3) indicate a range of values of f

where the epidemiological outcome depends on the initial density of the Acr-phage (epidemiological bistability). Note that the

threshold value of the density of Acr-phage leading to an epidemic depends also on the duration of the immunosuppression (see

Figure 4D).

In Figure S4 we illustrate the epidemiological dynamics taking place when the initial density of the Acr-phage is either below or

above the threshold value of the phage inoculum. Below the threshold (Figure S4A), the density of immunosuppressed bacteria

does not reach a high enough level to satisfy condition (3) and the Acr-phage population goes extinct. Above the threshold (Fig-

ure S4B), the immunosuppressed bacteria reaches a high enough density, condition (3) is verified and the Acr-phage population

can exploit the whole bacteria population.
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The above model assumes that the host population is initially monomorphic (i.e., only one type of resistant bacteria). We can relax

this assumption and consider a case where the initial population is composed of n different resistant bacteria. The initial frequency of

these different bacteria is assumed to be pi and each resistantmay have a different efficacy of resistance ri. In this case, the threshold

value of the Acr efficacy becomes (compare with (2)):

f>f0 =
1Pn

i = 1pið1� riÞB
(4)

Below this threshold, the Acr-phage will be able to induce an epidemic only if the initial density of the virus is above a threshold

density. In other words, the initial diversity of the host population does not affect qualitatively the behavior of the system: the exis-

tence of an epidemiological bistability is robust to the existence of an initially diverse bacteria population. In Figures S5C and S5Dwe

illustrate the epidemiological dynamics taking place when the initial density of the Acr-phage is either below or above the threshold

value of the phage inoculum in a situation where the initial bacterial population is polymorphic (comparewith Figures S5A and S5B). In

Figure S5E we show the effect of increasing inoculum size on the final phage population size in a situation where the initial bacterial

population is polymorphic (compare with Figure 4B).

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments were carried out in at least six biological replicates (n R 6). Statistical parameters and tests are stated in figure leg-

ends, figures and results. Unless otherwise stated, the statistical tests used were general linear models with the appropriate error

structure with significance determined by stepwise model simplification comparing full and null models using ANOVA. Model resid-

uals were checked to satisfy the assumptions made by each model. In all cases the threshold for significance was p < 0.05. Analysis

was conducted in R version 3.4.1. Figures were created using SigmaPlot version 12, and CorelDRAW version x7.

Efficiency of Plaquing assays
EOP was calculated based on the number of phage plaques on CRISPR-KO and CRISPR resistant hosts.

EOP=
#plaques on CRISPR resistant host

#plaques on CRISPR KO host

Competition assays to measure fitness
Relative frequencies of the strains with CRISPR resistance compared to the competing CRISPR-KO strain were determined through

colony numbers and used to calculate the relative fitness.

Relative fitness=
ðfraction strain A at t = xÞ3 ð1� ðfraction strain A at t = 0ÞÞ
ðfraction strain A at t = 0Þ3 ð1� ðfraction strain A at t = xÞÞ

Long-term immunosuppression experiment
Relative transformation efficiency was calculated using the number of transformed colonies on antibiotic selection plates for each of

the four phage treatments.

Relative transformation efficiency =
#colonies transformed with T plasmid

#colonies transformed with NT plasmid

DATA AND SOFTWARE AVAILABILITY

Sequence analysis scripts and draft genome assemblies of DMSmvir, DMS3mvir-AcrIF1, and DMS3mvir-AcrIF4 can be accessed

from https://github.com/s-meaden/landsberger under https://github.com/s-meaden/landsberger/blob/master/DMS3mvir.gff.gz,

https://github.com/s-meaden/landsberger/blob/master/DMS3mvirAcrF1.gff.gz, and https://github.com/s-meaden/landsberger/

blob/master/DMS3mvirAcrF4.gff.gz. Sequence data have been deposited in the European Nucleotide Archive under accession

number ENA: PRJEB25016. Raw data have been deposited at Mendeley Data under https://doi.org/10.17632/vt434wb4b4.1.
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Supplemental Figures

Figure S1. Bacteria with CRISPR Resistance Are Partially Immune to JBD26 and JBD30, Respectively, Related to Figure 1

(A) Efficiency of plaquing (EOP) of JBD26, which encodes AcrIF4 (blue bars) and JBD30, which encodes AcrIF1 (red bars) on BIM4 (1 newly acquired spacer

against both phages). Data correspond to the mean of 6 independent replicate experiments. Error bars represent 95% c.i.

(B–E) Viral titers at 24 hours post-infection (hpi) with (B) JBD26 and (C) JBD30 on the CRISPR KO strain, (D) JBD26 and (E) JBD30 on BIM4. Gray circles indicate

the phage titers (pfu/ml) at the start of the experiment (corresponding to the addition of 104, 105, 106, 107 or 108 pfus). Colored data points represent phage titers at

24 hpi. Note that the observed differences in amplification of JBD30 and JBD26 on CRISPR KO may be due to differences in their rates of lysogenisation. Each

experiment was performed as 6 independent replicates, error bars represent 95% c.i.



Figure S2. Epidemiological Tipping Points Cannot Be Explained by Phage Evolution or Csy Complex Sequestration, Related to Figure 2

(A) Deep sequencing of protospacer sequences of phages DMS3mvir (black data points), DMS3mvir-AcrIF1 (red data points) or DMS3mvir-AcrIF4 (blue data

points), either ancestral (A) or evolved on WT, BIM2 or BIM5 hosts (DMS3mvir only on WT). Protospacer 1 is targeted by WT, BIM2 and BIM5, protospacer 2 is

targeted by BIM2 and BIM5, and protospacers 3, 4 and 5 are targeted by BIM5. Mean SNP frequency across the seed and PAM region (in total 10 nucleotides) of

each protospacer is shown, error bars indicate the 95% c.i.

(B) Density-dependent epidemiological tipping points are not due to phage evolution. Viral titers at 24 hpi of phage DMS3mvir (black data points), DMS3mvir-

AcrIF1 (red data points) or DMS3mvir-AcrIF4 (blue data points) on bacteria PA14WT, BIM2 or BIM5. Below each diagram is indicated which phage amounts (pfus)

were added in the experiment. A indicates ancestral phage; E indicates evolved phage (isolated from the experiments depicted in Figure 2).

(C) Viral titers at 24 hpi of BIM2 with 104, 105, 106, 107 or 108 pfus DMS3mvir-AcrIF1.

(D) Viral titers at 24 hpi of BIM2 with 104, 105, 106, 107 or 108 pfus DMS3mvir-AcrIF1 in the presence of 108 pfus DMS3mvir.

(legend continued on next page)



(E) Viral titers at 24 hpi of BIM2 with 104, 105, 106, 107 or 108 pfus DMS3mvir-AcrIF4.

(F) Viral titers at 24 hpi of BIM2 with 104, 105, 106, 107 or 108 pfus DMS3mvir-AcrIF4 in the presence of 108 pfus DMS3mvir. Grey circles indicate the phage titers

(pfu/ml) at the start of the experiment (corresponding to the addition of 104, 105, 106, 107 or 108 pfus). Colored points represent phage titers at 24 hpi; each data

point represents an independent biological replicate (n = 6). The limit of detection is 200 pfu/ml.



Figure S3. Surface Mutants Invade the Bacterial Population at High Acr-Phage Densities, Related to Figure 3

(A) Resistance phenotypes (C =CRISPR resistance, SM= surface resistance) that evolved at 48 hpi with phageDMS3vir-AcrIF1 at the indicatedMOIs. All bacteria

in the populations initially had CRISPR resistance (2 spacers targeting the phage). Phage amplification was observed at an MOI of 10�2 or higher.

(B) Relative fitness of bacteria with CRISPR resistance (2 spacers targeting the phage) and surface resistance in the presence of phage DMS3vir-AcrIF1 at the

indicated MOIs.

(C) Resistance phenotypes (C =CRISPR resistance, SM= surface resistance) that evolved at 48 hpi with phage DMS3vir-AcrIF1 under either high phage densities

(HPD, 6 mL culture) or low phage densities (LPD, 600 mL culture). All bacteria in the populations initially had CRISPR resistance (2 spacers targeting the phage).

Data correspond to the mean of 6 independent replicate experiments. Error bars represent 95% c.i.



Figure S4. Partial Immunity Alone Cannot Explain the Observed Epidemiological Tipping Points, Related to Figure 4

Model predictions of the effect of initial Acr-phage inoculum density on the phage density at 24hpi for different values of Acr strength when no immunosup-

pressive stateS is assumed in themodel (f = 0.67, 0.6 and 0.5; purple,magenta, green respectively); other parameter values:B = 5, a= 0.001, g= 20, r= 0.7. Grey

line corresponds to the initial amount of phage and values below this line indicate a lack of phage amplification.



Figure S5. Model Predictions of the Temporal Population Dynamics of Acr-Phage and Resistant and Immunosuppressed Hosts, Related to

Figure 5

(A and B) Model predictions for the densities of resistant bacteria (black), immunosuppressed bacteria (orange) and phages (red) across time for two initial

inoculum sizes: (A) V(0) = 5.104, (B) V(0) = 8.104. Other parameter values: R(0) = 106, B = 5, a = 0.001, g = 20, r = 0.7.

(C and D) Model predictions of the temporal population dynamics of Acr-phage and resistant and immunosuppressed hosts when the bacteria is initially

composed of two different resistant hosts with different efficacy of resistance (r1 = 0.7 and r2 = 0.4) in equal frequency, with the densities of the two resistant

bacteria (full and dashed black lines, respectively), immunosuppressed bacteria (orange) and phages (red) across time for two initial inoculum sizes: (C) V(0) =

5.104, (D) V(0) = 6.104. Other parameter values: B = 5, a = 0.001, g = 20.

(E) Effect of initial Acr-phage inoculum density on the phage density at 24 hpi for different values of Acr efficacy (f = 0.42 (purple), f = 0.35 (magenta) and f = 0.2

(green)) when the bacteria is initially composed of two different resistant hosts with different efficacy of resistance (r1 = 0.7 and r2 = 0.4) in equal frequency. Other

parameter values: B = 5, a = 0.001, g = 20.

(F) Viral titers at 24 hpi of a 50:50 mix of BIM2 and BIM5 with 104, 105, 106, 107 or 108 pfus DMS3mvir-AcrIF1. Grey circles indicate the phage titers (pfu/ml) at the

start of the experiment. Colored points represent phage titers at 24 hpi; each data point represents an independent biological replicate (n = 6). The limit of

detection is 200 pfu/ml.
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