4,742 research outputs found

    Performance of large-size superconducting coil in 0.21T MRI system

    Get PDF
    A high-temperature superconductor (HTS) was used on magnetic resonance imaging (MRI) receiver coils to improve image quality because of its intrinsic low electrical resistivity [1], [2]. Typical HTS coils are surface coils made of HTS thin-film wafers. Their applications are severely limited by the field of view (FOV) of the surface coil configuration, and the improvement in image quality by HTS coil is also reduced as the ratio of sample noise to coil noise increases. Therefore, previous HTS coils are usually used to image small in vitro samples, small animals, or peripheral human anatomies [3]-[5]. We used large-size HTS coils (2.5-, 3.5-, and 5.5-in mean diameter) to enhance the FOV and we evaluated their performance through phantom and human MR images. Comparisons were made among HTS surface coils, copper surface coils, and cool copper surface coils in terms of the signal-to-noise ratio (SNR) and sensitivity profile of the images. A theoretical model prediction was also used to compare against the experimental result. We then selected several human body parts, including the wrist, feet, and head, to illustrate the advantage of HTS coil over copper coil when used in human imaging. The results show an SNR gain of 200% for 5.5-in HTS coil versus same size copper coils, while for 2.5- and 3.5-in coils it is 250%. We also address the various factors that affect the performance of large size HTS coils, including the coil-to-sample spacing due to cryogenic probe and the coil-loading effect.published_or_final_versio

    Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads

    Get PDF
    Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy

    Asymptomatic members with SOD1 mutation in a large kindred with familial amyotrophic lateral sclerosis have abnormal water diffusion characterisitcs

    Get PDF
    DTI was carried out in FALS/SALS patients and familial members with SOD1 mutation (AFALS) who may be in a pre-symptomatic phase of ALS. The changes in FA and TT were investigated in CBT/CST and in whole brain. In FALS/SALS, diffusion pattern changes were found in cerebral peduncle, internal capsule, sub-cortical white matter, cerebellum and frontal lobe while in AFALS, abnormal pattern could also be detected in the cerebral peduncle, cerebellum and frontal lobe but with a smaller extent. Our study indicates that DTI can show early diffusion changes in members with SOD1 mutation in FALS prior to symptom-onset.published_or_final_versio

    Self-rated health in middle-aged and elderly Chinese : distribution, determinants and associations with cardio-metabolic risk factors

    Get PDF
    Background: Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese. Methods: Survey of 1,458 men and 1,831 women aged 50 to 70 years, conducted in one urban and two rural areas of Beijing and Shanghai in 2005. SRH status was measured and categorized as good (very good and good) vs. not good (fair, poor and very poor). Determinants of SRH and associations with biomarkers of cardio-metabolic diseases were evaluated using logistic regression. Results: Thirty two percent of participants reported good SRH. Males and rural residents tended to report good SRH. After adjusting for potential confounders, residence, physical activity, employment status, sleep quality and presence of diabetes, cardiovascular disease, and depression were the main determinants of SRH. Those free from cardiovascular disease (OR 3.68; 95%CI 2.39; 5.66), rural residents (OR 1.89; 95% CI 1.47; 2.43), non-depressed participants (OR 2.50; 95% CI 1.67; 3.73) and those with good sleep quality (OR 2.95; 95% CI 2.22; 3.91) had almost twice or over the chance of reporting good SRH compared to their counterparts. There were significant associations -and trend- between SRH and levels of inflammatory markers, insulin levels and insulin resistance. Conclusion: Only one third of middle-aged and elderly Chinese assessed their health status as good or very good. Although further longitudinal studies are required to confirm our findings, interventions targeting social inequalities, lifestyle patterns might not only contribute to prevent chronic morbidity but as well to improve populations' perceived health

    An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium.

    Get PDF
    Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days-1 in simulations and 0.99 days-1 in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 40 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days-1 43 is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Physiology and cell biology of acupuncture observed in calcium signaling activated by acoustic shear wave

    Get PDF
    This article presents a novel model of acupuncture physiology based on cellular calcium activation by an acoustic shear wave (ASW) generated by the mechanical movement of the needle. An acupuncture needle was driven by a piezoelectric transducer at 100 Hz or below, and the ASW in human calf was imaged by magnetic resonance elastography. At the cell level, the ASW activated intracellular Ca 2+ transients and oscillations in fibroblasts and endothelial, ventricular myocytes and neuronal PC-12 cells along with frequency-amplitude tuning and memory capabilities. Monitoring in vivo mammalian experiments with ASW, enhancement of endorphin in blood plasma and blocking by Gd 3+ were observed; and increased Ca 2+ fluorescence in mouse hind leg muscle was imaged by two-photon microscopy. In contrast with traditional acupuncture models, the signal source is derived from the total acoustic energy. ASW signaling makes use of the anisotropy of elasticity of tissues as its waveguides for transmission and that cell activation is not based on the nervous system. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Cdk1 and SUMO Regulate Swe1 Stability

    Get PDF
    The Swe1/Wee1 kinase phosphorylates and inhibits Cdk1-Clb2 and is a major mitotic switch. Swe1 levels are controlled by ubiquitin mediated degradation, which is regulated by interactions with various mitotic kinases. We have recently reported that Swe1 levels are capable of sensing the progress of the cell cycle by measuring the levels of Cdk1-Clb2, Cdc5 and Hsl1. We report here a novel mechanism that regulates the levels of Swe1. We show that S.cerevisiae Swe1 is modified by Smt3/SUMO on residue K594 in a Cdk1 dependant manner. A degradation of the swe1K594R mutant that cannot be modified by Smt3 is considerably delayed in comparison to wild type Swe1. Swe1K594R cells express elevated levels of Swe1 protein and demonstrate higher levels of Swe1 activity as manifested by Cdk1-Y19 phosphorylation. Interestingly this mutant is not targeted, like wild type Swe1, to the bud neck where Swe1 degradation takes place. We show that Swe1 is SUMOylated by the Siz1 SUMO ligase, and consequently siz1Δ cells express elevated levels of Swe1 protein and activity. Finally we show that swe1K594R cells are sensitive to osmotic stress, which is in line with their compromised regulation of Swe1 degradation

    Development of FRET Assay into Quantitative and High-throughput Screening Technology Platforms for Protein–Protein Interactions

    Get PDF
    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research and is a very powerful tool in elucidating protein interactions in many cellular processes. Ubiquitination and SUMOylation are multi-step cascade reactions, involving multiple enzymes and protein–protein interactions. Here we report the development of dissociation constant (Kd) determination for protein–protein interaction and cell-based high-throughput screening (HTS) assay in SUMOylation cascade using FRET technology. These developments are based on steady state and high efficiency of fluorescent energy transfer between CyPet and YPet fused with SUMO1 and Ubc9, respectively. The developments in theoretical and experimental procedures for protein interaction Kd determination and cell-based HTS provide novel tools in affinity measurement and protein interaction inhibitor screening. The Kd determined by FRET between SUMO1 and Ubc9 is compatible with those determined with other traditional approaches, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). The FRET-based HTS is pioneer in cell-based HTS. Both Kd determination and cell-based HTS, carried out in 384-well plate format, provide powerful tools for large-scale and high-throughput applications

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. <p/>Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. <p/>Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. <p/>Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters
    corecore