369 research outputs found

    Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse Western margins of Ethiopian Highlands

    Get PDF
    The spatio-temporal characteristic of rainfall in the Beles Basin of Ethiopia is poorly understood, mainly due to lack of data. With recent advances in remote sensing, satellite derived rainfall products have become alternative sources of rainfall data for such poorly gauged areas. The objectives of this study were: (i) to evaluate a multi-source rainfall product (Climate Hazards Group Infrared Precipitation with Stations: CHIRPS) for the Beles Basin using gauge measurements and (ii) to assess the spatial and temporal variability of rainfall across the basin using validated CHIRPS data for the period 1981-2017. Categorical and continuous validation statistics were used to evaluate the performance, and time-space variability of rainfall was analyzed using GIS operations and statistical methods. Results showed a slight overestimation of rainfall occurrence by CHIRPS for the lowland region and underestimation for the highland region. CHIRPS underestimated the proportion of light daily rainfall events and overestimated the proportion of high intensity daily rainfall events. CHIRPS rainfall amount estimates were better in highland regions than in lowland regions, and became more accurate as the duration of the integration time increases from days to months. The annual spatio-temporal analysis result using CHIRPS revealed: a mean annual rainfall of the basin is 1490 mm (1050-2090 mm), a 50 mm increase of mean annual rainfall per 100 m elevation rise, periodical and persistent drought occurrence every 8 to 10 years, a significant increasing trend of rainfall (similar to 5 mm year(-1)), high rainfall variability observed at the lowland and drier parts of the basin and high coefficient of variation of monthly rainfall in March and April (revealing occurrence of bimodal rainfall characteristics). This study shows that the performance of CHIRPS product can vary spatially within a small basin level, and CHIRPS can help for better decision making in poorly gauged areas by giving an option to understand the space-time variability of rainfall characteristics

    Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction

    Get PDF
    Among many alternatives, CO2 electroreduction (CO2ER) is an emerging technology to alleviate its level in the atmosphere and simultaneously to produce essential products containing high energy density using various electrocatalysts. Cu-based mono- and bimetallics are electrocatalysts of concerns in this work due to the material's abundance and versatility. Intrinsic factors affecting the CO2ER are first analyzed, whereby understanding and characterizing the surface features of electrocatalysts are addressed. An X-ray absorption spectroscopy-based methodology is discussed to determine electronic and structural properties of electrocatalyst surface which allows the prediction of reaction mechanism and establishing the correlation with reduction products. The selectivity and faradaic efficiency of products highly depend on the quality of surface modification. Preparation and modification of electrocatalyst surfaces through various techniques are critical to increase the number of activity sites and the corresponding site activity. Mechanisms of CO2ER are complicate and thus are discussed in accordance with main products of interests. The authors try to concisely compile the most interesting, recent, and reasonable ideas that are agreeable to experimental results. Finally, this review provides an outlook for designing better Cu and Cu-based bimetallic catalysts to obtain selective products through CO2ER

    Role of the reversible electrochemical deprotonation of phosphate species in anaerobic biocorrosion of steels

    Get PDF
    Sulphate reducing bacteria are known to play a major role in anaerobic microbiological influenced corrosion of steels, but mechanisms behind their influence are still source of debates as certain phenomena remain unexplained. Some experiments have shown that hydrogen consumption by SRB or hydrogenase increased the corrosion rate of mild steel. This was observed only in the presence of phosphate species. Here the cathodic behaviour of phosphate species on steel was studied to elucidate the role of phosphate in anaerobic corrosion of steel. Results showed: a linear correlation between reduction waves in linear voltammetry and phosphate concentration at a constant pH value; that phosphate ions induced considerable anaerobic corrosion of mild steel, which was sensitive to hydrogen concentration in the solution; and that the corrosion potential of stainless steel in presence of phosphate was shifted to more negative values as molecular hydrogen was added to the atmosphere in the reaction vessel. Phosphate species, and possibly other weak acids present in biofilms, are suggested to play an important role in the anaerobic corrosion of steels via a reversible mechanism of electrochemical deprotonation that may be accelerated by hydrogen removal

    Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Get PDF
    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track.

    The antimicrobial efficacy of elaeis guineensis : characterization, in Vitro and in Vivo studies

    Get PDF
    The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at =, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studied in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.<br /
    corecore