730 research outputs found

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded

    Neutral-Current Four-Fermion Production in e+e- Interactions at LEP

    Get PDF
    Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of data collected with the L3 detector at LEP at centre-of-mass energies root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and llvv, where l denotes either an electron or a muon. Their cross sections are measured and found to agree with the Standard Model predictions. In addition, the e+e- -> Zgamma* -> ffff process is studied and its total cross section at the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/- 0.03 pb, where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass spectra of the qqll final states are analysed to search for the possible production of a new neutral heavy particle, for which no evidence is found

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2

    Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP

    Get PDF
    The evolution of the electromagnetic coupling, alpha, in the momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about 40000 Bhabha-scattering events collected with the L3 detector at LEP at centre-of-mass energies 189-209GeV. The running of alpha is parametrised as: alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the fine-structure constant and C=1 corresponds to the evolution expected in QED. A fit to the differential cross section of the e+e- ->e+e- process for scattering angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/- 0.07 +/- 0.14, where the first uncertainty is statistical and the second systematic

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Inclusive Lambda Production in Two-Photon Collisions at LEP

    Full text link
    The reactions e^+e^- -> e^+e^- Lambda X and e^+e^- -> e^+e^- Lambda X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. Inclusive differential cross sections are measured as a function of the lambda transverse momentum, p_t, and pseudo-rapidity, eta, in the ranges 0.4 GeV < p_t < 2.5 GeV and |\eta| < 1.2. The data are compared to Monte Carlo predictions. The differential cross section as a function of p_t is well described by an exponential of the form A exp (- p_t / )$

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Study of the e+e- -> Ze+e- process at LEP

    Get PDF
    The cross section of the process e+e- -> Ze+e is measured with 0.7fb^-1 of data collected with the L3 detector at LEP. Decays of the Z boson into quarks and muons are considered at centre-of-mass energies ranging from 183GeV up to 209GeV. The measurements are found to agree with Standard Model predictions, achieving a precision of about 10% for the hadronic channel
    corecore