137 research outputs found
Use of clay in the manufacture of lightweight aggregate
Clay is used as a raw material for the production of lightweight aggregates because it is readily processed into suitable granules and forms low-density but high strength aggregate particles when sintered at relatively low temperatures. The use of waste clay generated by major infrastructure development projects to make lightweight aggregate has a positive environmental impact and contributes towards a more circular economy. This paper reviews the manufacturing process used to produce lightweight aggregates from clay and the influence of processing conditions on properties. It also reviews secondary materials that have been incorporated into clays to produce lightweight aggregates. Additional research is required to improve understanding of the effects of composition and production parameters on the pore structure, density, water adsorption and strength of clay derived lightweight aggregates
Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material
Major infrastructure development projects in London produce large quantities of London clay and use significant volumes of concrete. Portland cement (CEM I) in concrete is normally partially replaced by supplementary cementitious materials such as ground granulated blastfurnace slag or pulverised fuel ash. The supply of supplementary cementitious materials is critical to the production of sustainable concrete. This study has investigated use of waste London clay as a supplementary cementitious material. The optimum calcined clay was produced at 900 °C and concrete made with 30 wt% of CEM I replaced by calcined clay had 28-day strengths greater than control samples. Compressive strengths of concrete containing calcined London clay were similar to concrete containing ground granulated blastfurnace slag and pulverised fuel ash. The production of calcined London clay emits ∼70 kg CO2/tonne and this is 91% lower than CEM I. 30 wt% replacement of CEM I by calcined London clay therefore produces concrete with ∼27% lower embodied carbon. London clay can be calcined to form a technically viable supplementary cementitious material and use of this in concrete would enable major civil infrastructure projects to contribute to a circular economy
Manufacture and performance of lightweight aggregate from waste drill cuttings
This research investigated the technical feasibility of transforming waste drill cuttings into lightweight aggregate. Drill cuttings produced from the North Sea oil field were dried, ball milled, formed into pellets and fired at temperatures between 1160 and 1190 °C. Physical properties of the manufactured lightweight aggregate, including particle density, water absorption and compressive strength, were determined. The drill cuttings had a typical evaporite composition containing high concentrations of chloride salts. This limits the potential for using the as-received drill cutting samples in lightweight aggregate production as the products formed show high levels of leaching. The addition of a washing pre-treatment to reduce the leaching of chloride ions was necessary. Washing also reduced the initial sintering temperature and improved lightweight aggregate properties. Sintering at 1180 °C produced lightweight aggregate with particle density of 1.29 g/cm³, water absorption of 3.6% and compressive strengths of 4.4 MPa. The research showed that lightweight aggregate manufacturing represents a resource efficient option for the reuse of waste drill cuttings and provides significant material saving and landfill diversion
Resonance assignments of the microtubule-binding domain of the C. elegans spindle and kinetochore-associated protein 1
During mitosis, kinetochores coordinate the attachment of centromeric DNA to the dynamic plus ends of microtubules, which is hypothesized to pull sister chromatids toward opposing poles of the mitotic spindle. The outer kinetochore Ndc80 complex acts synergistically with the Ska (spindle and kinetochore-associated) complex to harness the energy of depolymerizing microtubules and power chromosome movement. The Ska complex is a hexamer consisting of two copies of the proteins Ska1, Ska2 and Ska3, respectively. The C-terminal domain of the spindle and kinetochore-associated protein 1 (Ska1) is the microtubule-binding domain of the Ska complex. We solved the solution structure of the C. elegans microtubule-binding domain (MTBD) of the protein Ska1 using NMR spectroscopy. Here, we report the resonance assignments of the MTBD of C. elegans Ska1.Austrian Science Fund (project P22170, and the doctoral school ‘‘DK Molecular Enzymology’’ (W901-B05)
Separating Proactive Conservation from Species Listing Decisions
Proactive Conservation is a paradigm of natural resource management in the United States that encourages voluntary, collaborative efforts to restore species before they need to be protected through government regulations. This paradigm is widely used to conserve at-risk species today, and when used in conjunction with the Policy for Evaluation of Conservation Efforts (PECE), it allows for successful conservation actions to preclude listing of species under the Endangered Species Act (ESA). Despite the popularity of this paradigm, and recent flagship examples of its use (e.g., greater sage grouse, Centrocercus urophasianus), critical assessments of the outcomes of Proactive Conservation are lacking from the standpoint of species status and recovery metrics. Here, we provide such an evaluation, using the New England cottontail (Sylvilagus transitionalis), heralded as a success of Proactive Conservation efforts in the northeastern United States, as a case study. We review the history and current status of the species, based on the state of the science, in the context of the Conservation Initiative, and the 2015 PECE decision not to the list the species under the ESA. In addition to the impacts of the PECE decision on the New England cottontail conservation specifically, our review also evaluates the benefits and limits of the Proactive Conservation paradigm more broadly, and we make recommendations for its role in relation to ESA implementation for the future of at-risk species management. We find that the status and assurances for recovery under the PECE policy, presented at the time of the New England cottontail listing decision, were overly optimistic, and the status of the species has worsened in subsequent years. We suggest that use of PECE to avoid listing may occur because of the perception of the ESA as a punitive law and a misconception that it is a failure, although very few listed species have gone extinct. Redefining recovery to decouple it from delisting and instead link it to probability of persistence under recommended conservation measures would remove some of the stigma of listing, and it would strengthen the role of Species Status Assessments in endangered species conservation
Challenges and opportunities associated with waste management in India
India faces major environmental challenges associated with
waste generation and inadequate waste collection, transport,
treatment and disposal. Current systems in India cannot
cope with the volumes of waste generated by an increasing
urban population, and this impacts on the environment and
public health. The challenges and barriers are significant,
but so are the opportunities. This paper reports on an
international seminar on ‘Sustainable solid waste management
for cities: opportunities in South Asian Association for Regional
Cooperation (SAARC) countries’ organized by the Council
of Scientific and Industrial Research-National Environmental
Engineering Research Institute and the Royal Society. A priority
is to move from reliance on waste dumps that offer no
environmental protection, to waste management systems that
retain useful resources within the economy. Waste segregation
at source and use of specialized waste processing facilities
to separate recyclable materials has a key role. Disposal of
residual waste after extraction of material resources needs
engineered landfill sites and/or investment in waste-to-energy
facilities. The potential for energy generation from landfill via
methane extraction or thermal treatment is a major opportunity,
but a key barrier is the shortage of qualified engineers and
environmental professionals with the experience to deliver
improved waste management systems in India
Dual recognition of CENP-A nucleosomes is required for centromere assembly
CENP-C and CENP-N recognize distinct structural elements of CENP-A nucleosomes, providing a foundation for the assembly of other centromere and kinetochore components
Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin
<p>Abstract</p> <p>Background</p> <p>Macrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to <it>in vitro </it>stimulation with endotoxin from <it>Salmonella </it><it>typhimurium</it>-798.</p> <p>Results</p> <p>The 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of <it>IL1B</it>, <it>IL6</it>, <it>IL8</it>, and <it>TLR15</it>, but not <it>IL10 </it>and <it>IFNG </it>in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The <it>NFKBIA, IL1B, IL8 and CCL4 </it>genes were consistently induced at all times after endotoxin treatment. <it>NLRC5 </it>(CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin.</p> <p>Conclusions</p> <p>As above using an <it>in vitro </it>model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as <it>Salmonella</it>. The induction of <it>NFKBIA, IL1B, IL8, CCL4 </it>genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor family member in response to <it>Salmonella </it>endotoxin in chicken macrophages.</p
A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy
Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease
Solution and Solid-State Characterization of Zn(II) Complexes Containing A New Tridentate N\u3csub\u3e2\u3c/sub\u3es Ligand
A new N2S ligand bis(pyridyl)(2-mercapto-1-methylimidazolyl)methane (2, Py2MeImS) has been synthesized and characterized. Treatment of this ligand with bromide and triflate salts of Zn(II) results in the complexes (Py2MeImS)ZnBr2 (3) and [(Py2MeImS)2Zn](OTf)2 (4), respectively. The solid-state structure of (Py2MeImS)ZnBr2 shows bidentate N,N-coordination of Py2MeImS to the zinc ion, with the sulfur atom of the 2-mercaptoimidazole moiety uncoordinated. Two conformers of 3 rapidly interconvert in solution at room temperature, and variable temperature NMR studies and DFT calculations were used to help assign the likely identity of these conformers. In contrast, the crystal structure of [(Py2MeImS)2Zn] (OTf)2 exhibits a zinc ion with a distorted octahedral geometry where the two sulfur atoms of the two ligands are coordinated to the zinc center in a cis-configuration. Even though the cis-isomer (4-cis) is calculated to be lower in energy than the trans-isomer (4-trans), the low temperature 1H NMR spectrum of 4 reveals a single symmetric species that is inconsistent with the cis-isomer observed in the solid-state structure. DFT calculations propose alternative higher energy structures, including a trans-configuration of the coordinated S-atoms of the two Py2MeImS ligands, as well as structures in which the 2-mercaptoimidazole groups are no longer coordinated to the zinc(II) center. These studies provide valuable insight into the potential binding modes of this new ligand and its behavior in solution
- …