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Abstract 

 

Clay is used as a raw material for the production of lightweight aggregates because it is 

readily processed into suitable granules and forms low-density but high strength aggregate 

particles when sintered at relatively low temperatures. The use of waste clay generated by 

major infrastructure development projects to make lightweight aggregate has a positive 

environmental impact and contributes towards a more circular economy. This paper reviews 

the manufacturing process used to produce lightweight aggregates from clay and the 

influence of processing conditions on properties. It also reviews secondary materials that 

have been incorporated into clays to produce lightweight aggregates. Additional research is 

required to improve understanding of the effects of composition and production parameters 

on the pore structure, density, water adsorption and strength of clay derived lightweight 

aggregates. 
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1. Introduction 

 

Managing clay containing mineral wastes has become a major challenge for many major 

civil infrastructure construction projects [1]. Problems are often associated with transporting 

high volumes of clay mineral wastes, which causes pollution, increased road congestion and 

risks to public safety. The disposal options for excavated materials are also an issue. For 

example, construction of the Crossrail 1 underground tunnel in London UK, resulted in more 

than 4 million tonnes of waste London clay which was primarily used in land reclamation [2]. 

Additional future and ongoing tunnelling projects in London include the Thames Tideway 

Tunnel and the High Speed Two (HS2) rail link, and these two infrastructure development 

projects will produce an estimated 18.8 million tonnes of excavated materials that 

predominantly contain clay minerals [3]. 

There are often significant economic and environmental drivers to use recycled materials 

in construction as this can contribute to a circular economy in which waste materials remain 

part of the economic cycle [4]. The use of clay in the manufacture of lightweight aggregates 

(LWA) is a potential recycling option for clay wastes. LWA has previously been produced 

from London clay generated by Crossrail at pilot plant scale, and it was estimated that 2.8 

million tonnes of LWA could have been manufactured from Crossrail excavated clay. This 

would have produced more than 9.0 million cubic metres of low-carbon lightweight structural 

concrete [2]. 

The market for LWA is expected to increase as the demand for lightweight and thermally 

insulating concrete increases. Of the alternative secondary raw materials available to produce 

LWA, clay remains the most viable, due to consistent properties and availability close to 

urban areas from excavations and tunnelling. Table 1 contains journal publications on the use 

of clay in manufacturing LWA over the past two decades. In addition to excavation wastes, 
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clay minerals are extracted from harbours, river beds and reservoirs where they cause serious 

sedimentation problems. Research on recycling these materials into LWA also provides a 

potential reuse option [5-13].  

This paper reviews the properties of LWA produced from clays and discusses the role of 

chemical composition, processing conditions and microstructure in manufacturing optimum 

products. In addition, the review provides guidance on the types of secondary materials that 

have been incorporated into clay to produce LWA and identifies areas where further research 

is required. 

 

2. LWA manufactured from clay 

 

LWA was first manufactured commercially in the UK during the 1950s using clay and 

shale from the mining and slate industries. Additional types of LWA were developed to meet 

increasing national demand. Lytag is a LWA manufactured from pulverized fuel ash (PFA), a 

by-product from coal-fired power stations [14,15]. It was first manufactured in 1958 and 

remains a commercially leading LWA for structural lightweight concrete [16]. The 

availability of PFA in the UK and EU will decline in the future due to the move away from 

coal fired power stations [17]. In addition, PFA can be used as a supplementary cementitious 

material (SCM) and this is an alternative reuse application that may limit PFA availability for 

LWA production [18-20]. 

Figure 1 shows a typical manufacturing process for producing LWA from clay. The two 

main stages are granule formation and sintering [21]. The raw materials are finely ground and 

mixed in specific proportions. ranules are formed by extrusion or 

agglomeration using an appropriate water addition. 

granules are important during handling and stockpiling and these depend on the granulation 
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process, the properties of the clay and the moisture content [22,23]. The influence of 

granulation parameters on is complex and a comprehensive 

model that predicts granulation behaviour and performance is not currently available. After 

granulation, are normally dried and then sintered. The sintering 

temperatures for clay LWA are typically between 1050 °C and 1250 °C, using typical dwell 

times in the kiln of between 3 and 20 minutes. 

The production of clay derived LWA requires processing in a temperature range where 

pyro-plastic deformation, gas generation and gas retention occur simultaneously. The main 

sources of gas generation in clay-containing minerals at high temperatures are dissociation or 

reduction of ferric oxides, combustion of organic matter, release of interlayer water 

molecules and thermal decomposition of carbonates [24,25]. The temperatures at which gases 

are generated vary and this influences/controls the bloating behaviour [26]. It is not normally 

possible to identify the critical components that cause bloating from bulk chemical 

composition data, but the ratio of silica and alumina content to the flux content is normally 

considered to be an important parameter [27]. However, the proportion of alumina-iron 

oxides-alkaline earths, regardless of silica content is also reported to control bloating [28]. As 

a result, it is difficult to predict whether or not a material will bloat based only on chemical 

composition data, and normally firing trials need to be completed [29]. 

 

2.1 Properties of LWA manufactured using clay 

Standards for concrete, mortar and grout define LWA as a granular material with a loose 

bulk density below 1.2 g/cm3 or a particle density not exceeding 2.0 g/cm3 [30]. An ideal clay 

LWA for use in concrete would be roughly spherical, 4 to 14 mm in diameter, with a strong, 

porous, sintered core and an impermeable rough surface to enhance the hydrated cement-

aggregate bond [31]. The pore structure of a clay LWA is a major factor determining particle 
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density, water absorption and strength. Raw material characteristics and production 

parameters also influence the properties of LWA through the pore structure. The pore 

structure is therefore an intermediate variable that allows construction of causal pathways, as 

shown in Figure 2, between the composition, processing and key properties. The influence of 

chemical composition and processing parameters on pore structure and the influence of pore 

structure on physical properties, marked as (i), (ii) and (iii), are explained as follows: 

 

 

The bloating mechanism in clay minerals occurs when a viscous silicate-containing phase 

captures gases released at high temperature. The flux content determines the temperature 

range over which pyro-plasticity occurs, while a number factors, including the silicate 

content, control the viscosity [32]. An important mineralogical feature for clay-bearing raw 

materials is the SiO2 lux (i.e. Fe2O3, Na2O, K2O, CaO and MgO) ratio [27]. This has been 

widely used to predict bloating of clay bodies and some work reports a relationship between 

this ratio and the total porosity in manufactured LWAs. In addition, effective bloating 

requires the formation of a non-porous vitrified surface layer (shell), to capture the released 

gases [33]. The degree of shell vitrification is also related to the SiO2  [34]. 

 

 

The schematic pore structure of clay LWA is shown in Figure 3 (left). It consists of pores 

evenly distributed across the core matrix, surrounded by a non-porous surface. The black core 

observed in LWA shown in Figure 3 (right) indicates that reducing condition occur during 

firing. 

Figure 4 shows scanning electron microscope (SEM) images of a typical clay LWA 

granule showing the ideal microstructural features and pore structure. Figure 4a shows the 
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high total porosity in the core. Figure 4b shows approximately spherical pores ranging in size 

from 1  Figure 4c and 4d show reducing pore size towards the surface where the 

non-porous vitrified regions form due to the temperature gradient between the core and the 

surface. 

If the temperature is excessively high during sintering, excess gas may be generated, 

increasing total porosity and producing continuous pores [35]. In addition, further increases 

in temperature above the pyro-plasticity range can result in viscous flow, reducing the 

porosity and pore size [36]. The heating rate also influences the microstructure of clay 

LWAs. If the heating rate is low the material may be incompletely vitrified allowing any 

gases generated to escape without causing bloating. 

Rapid cooling may also produce micro-cracks between the core and the surface of the 

LWA. Under these conditions the LWA shell and core may experience different thermal 

contractions which can induce stress in the shell, producing micro-cracks that reduce 

strength. It is reported that this effect can be avoided in LWAs manufactured from clay using 

slow cooling (0.7 °C/min) and this resulted in 114% increase in strength [37]. The influence 

of cooling on the strength of LWA manufactured from clay and ferrochrome sludge has been 

reported and a relationship found between the pore structure and cooling rate [38]. The total 

porosity and average pore size were found to be higher in rapidly cooled LWAs compared to 

the same composition subjected to slow cooling. The reduced average pore size allowed 

slow-cooled granules to form a continuous framework structure that had higher compressive 

strength compared to rapidly cooled LWA in which cracks were observed to develop from 

large pores. 

The dwell time at high temperature also influences the LWA pore structure. Increasing the 

dwell time has been reported to increase the total porosity but decreases the number of pores 

[39]. This change in pore structure is due to increasing pore connectivity. A uniform pore size 
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distribution would characterise an ideal clay LWA pore structure. This can be achieved by 

homogenization of raw materials with techniques such as milling and sieving. However, the 

effect of processing parameters on the pore structure of LWAs manufactured from clays has 

not been extensively studied. 

 

 

The degree of connected porosity linked to the surface determines the water absorption 

capacity of LWA [11]. Poor sintering is the main cause of high open porosity and high water 

absorption capacity in LWA [40]. High total porosity and large pores reduced the 

compressive strength of LWA made of silt-clay waste [41]. The reduction in strength due to 

increasing porosity is based on the relationship between strength and density. A uniform pore 

size can increase the compressive strength of clay LWAs because it promotes a more 

homogenous stress distribution throughout the microstructure [31,42]. However, research to 

date has not adequately investigated the effect of pore structure on the strength of clay 

LWAs. 

The particle density and water absorption data for the LWAs of Table 1 are plotted in 

Figure 5. The water absorption for most manufactured LWA is below 20% and the particle 

density ranges between 0.50 and 2.00 g/cm³. Very low particle density (<0.5 g/cm³) and more 

than 50% water absorption were observed in LWA prepared using smectite-rich clay [43]. 

Clay LWAs with high water absorption (>50%) and particle density around 1.00 g/cm³ were 

manufactured from batches containing high quantities (up to 75% by weight) of sewage 

sludge in which open porosity was formed as the sludge combustion gas formed open 

channels that were connected to the granule surface [44]. 

The particle density and water absorption of three commercial LWAs, Lytag (raw 

material: PFA), Trefoil (raw material: PFA, sewage sludge and clay) and LECA (raw 
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material: clay) are included in Figure 5. In many cases, water absorption of clay LWA were 

lower than for Lytag and Trefoil. This indicates that high-quality LWA with low particle 

density and water absorption comparable to commercial products can be manufactured from 

various types of clay containing materials. 

 

2.2 Mineralogy of clay LWA 

 

Table 2 summarises X-ray diffraction (XRD) data showing the crystalline phases present 

in clay and clay derived LWA products, indicating the mineralogical changes that occur 

during sintering. Natural clay deposits typically contain smectite, kaolinite, chlorite and illite 

together with some non-clay components such as quartz, feldspars and calcite. Other phases 

associated with clay mineral such as muscovite and vermiculate have also been identified. 

Most clay minerals have demonstrated bloating and can be used to form LWA [8,12]. Illitic 

clays are reported to be more effective at trapping CO2 from carbonate decomposition than 

kaolinitic clays [29]. 

The neo-formed minerals in Table 2 show that most of the initial phases transform as a 

result of thermal treatment. The amorphous phase in clay LWAs can have different origins in 

addition to the clay component, such as the opal phase in clay-rich diatomite [45] or the 

amorphous phase added to the mix as a secondary material [46]. The amount of amorphous 

phase has also been reported to increase at higher temperatures as demonstrated when 

reservoir sediments were used as the raw material [7]. 

Among the three main end members of feldspars, anorthite has been attributed to high 

content of CaO that remains after decomposition of carbonates. Ca2+ ions are capable of 

substitution into the aluminosilicate matrix and this allows the formation of anorthite [47]. 

This was observed in LWA manufactured from water reservoir sediments when CaO was 
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added to the mix [7]. Albite, the Na end-member of the plagioclase division, has also been 

reported to form in LWA manufactured from reservoir sediment as a result of the addition of 

NaOH [13]. 

Research results have also linked the presence of certain minerals to the physical properties 

of LWAs and compressive strength, in particular. For example, in LWAs manufactured from 

high carbon ferrochrome slag, the forsterite phase that belongs to the olivine group of 

nesosilicates, influences strength [38]. Forsterite has a poor resistance to thermal shock and if 

this phase is neo-formed, the internal stresses during cooling can lead to micro-cracks that 

reduces compressive strength. Conversely, neo-formed mullite, the main product of illitic and 

kaolinitic clay thermal decomposition, has been associated with strength development [48]. 

However, the effect of neo-formed phases on the physical properties of LWA have not been 

extensively studied. 

 

3. Compatibility of clay with secondary materials 

 

An important economic aspect of LWA production is the potential to incorporate 

secondary materials, which are often wastes, as partial replacements for clay. Leachable 

heavy metals and other soluble constituents present in the waste can be encapsulated in a 

silicate-based matrix or substitute other ions in the crystal structure during sintering at high 

temperature, making them non-leachable [49]. This method has been presented as a recycling 

option for a number of secondary materials including sewage sludge, waste polishing 

residues and waste glass. In some cases, hazardous waste such as energy-from-waste (EfW) 

residues have been used, as shown in Table 1. 

Despite the success in manufacturing LWAs from clay and wastes that meet regulatory 

requirements, most of the reviewed studies have not investigated the long-term risk 
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associated with this approach. Many studies have used the toxicity characteristic leaching 

procedure (TCLP) or the single batch BS EN 12457 leaching test which are not appropriate 

for characterising long-term leaching. These tests fail to take into account the conditions of 

different applications and therefore they should be used with other test methods such as the 

pH dependence leaching tests [50]. For instance, synthetic aggregates may have a poor 

buffering capacity which makes them sensitive if they are exposed to, or used in, acidic or 

alkaline conditions [51]. 

Thermal treatment generates vitrified (glassy) phases that can provide physical 

encapsulation and limit the exposure of leachable constituent to the environment. However, 

that is not always the case, as some constituents such as Mo and As may transform into more 

mobile chemical forms on heating [52]. A study of the leaching behaviour of clay LWA 

incorporating coal fly ash showed that heavy metals such as Cr, Ni, Mn and Zn can form part 

of neo-formed spinel groups and feldspar crystalline structures, and Pb and Cd can react with 

SiO2 (in phyllosilicates) and enter the amorphous phases [53]. This study reported that 

divalent and trivalent ions such as Mn and Cr can partially replace Mg2+ and Al3+ and/or Fe3+ 

in the spinel and/or magnetite series. In a similar study on stabilization of heavy metals in 

LWA incorporating sewage sludge and river sediments, it was shown that under oxidative 

conditions, Al3+ can replace tetrahedral Si4+, producing an additional negative charge in the 

network that can be balanced by heavy metal cations such as Cd, Cr and Cu [54]. The study 

also related leaching characteristics to the degree of sintering. The authors reported that 

higher Fe2O3 content was beneficial for solidification of Cd, Cu and Pb, as Fe2O3 reduces the 

eutectic point, promoting liquid phase sintering and reducing the permeability of the alumina-

silicate matrix. 
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4. Embodied carbon dioxide in clay derived LWA 

 

The embodied carbon (ECO2) in clay LWA comes mainly from the carbon dioxide 

associated with excavation and transportation of the raw materials and the manufacturing 

process. These need to be taken into account for a comprehensive and accurate estimation of 

the ECO2 [55]. Although LWA manufacture uses energy and emits CO2, the use of waste 

clay to manufacture LWA can be associated with significant CO2 saving. 

Transportation of waste clay to a LWA manufacturing plant (or building a plant in the 

vicinity of waste clay stream) will be highly site specific. The use of LWA to replace normal 

weight aggregate in pre-cast concrete products is associated with additional carbon savings 

associated with more efficient component transportation due to reduced weight [56]. 

However, if calculations are based on concrete volume (cubic meter), then minimal 

difference in ECO2 are reported [19]. 

Sintering is the most energy intensive stage in the LWA manufacturing process. Clay 

LWA manufacture has been estimated to emit ~0.22 tonne of CO2 per tonne of aggregate 

[57]. This compares favourably with the emissions from Portland cement production, where 

~0.83 tonne of CO2 is generated per tonne of cement. Energy for LWA production can be 

provided from biomass combustion given the relatively low sintering temperature required. A 

number of studies have used organic matter such as sewage sludge in the mix as an energy 

source [20,54,58]. In addition, the use of waste clay derived LWA improves thermal 

insulation properties of concrete, reduces permeability and reduces structural dead load, 

allowing the construction of larger buildings with the same foundation size, all of which are 

associated with reduced CO2 emissions. 
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5. Conclusions 

 

The potential environmental impacts associated with reuse applications for waste clay 

and the high cost of landfill should ensure that infrastructure development projects 

increasingly consider LWA production from waste clay. This paper has reviewed the 

literature relevant to this reuse application. LWA production from clay can be commercially 

viable, but control of the manufacturing process and particularly the bloating process is 

essential to produce an ideal LWA pore structure. The pore structure in LWA is characterised 

by the total porosity, pore connectivity and the pore size distribution and these all relate to the 

final LWA properties of particle density, water absorption and compressive strength. Using 

waste clay as a raw material for LWA production can provide CO2 savings and can allow 

additional secondary materials to be beneficially used in the manufacturing process. The 

long-term leaching implications of incorporating waste materials in LWA need to be fully 

investigated. 
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Table 1 

Lightweight aggregate research studies using clay that have been reviewed. 
 
Raw Material Secondary material 

incorporated 
Reference 

Clayey diatomite rock Sawdust [1] 
Clay CaF2 sludge [2] 
Smectite-rich clay stone Sand [3] 
White clay and shale  MSWI* fly ash [4] 
Clay Sewage sludge [5] 
Reservoir Sediment - [6] 
Clay Granite polishing residue [7] 
Silt-clay waste CC** fly ash [8] 
Silt-clay waste Sewage sludge [9] 
Reservoir Sediment MSWI fly ash [10] 
Reservoir sediment - [11] 
Reservoir sediment - [12] 
Harbour sediment Waste glass [13] 
Reservoir Sediment MSWI fly ash [14] 
Reservoir sediment - [15] 
Clay - [16] 
Silt-clay waste CC fly ash [17] 
Clay - [18] 
Clay - [19] 
Clay APC*** residues [20] 
Clay APC residues [21] 
Clay CC fly ash [22] 
Clay FeCr slag [23] 
Clay Granite [24] 
Silt-clay waste Sewage sludge [25] 
Clay Bauxite (red mud) [26] 
Clay Sewage sludge [27] 
London clay - [28] 
* Municipal solid waste incineration, ** Coal combustion and *** Air pollution control residues. 
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Table 2 
XRD analyses for the reviewed manufactured clay LWAs and the corresponding  

 
Materials Initial phase Final phase 

 

Q
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K
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Sm
ectite 
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V
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M
uscovite 

C
hlorite 

Feldspars 
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M
agnetite 

O
pal 

W
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H
em

atite 

C
orundum

 

C
alcite 

G
lass 

Q
uartz 

Feldspars 

M
ullite 

H
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atite 

A
lbite 

A
northite 

H
ercynite 

Sillim
anite 

Spinel 

Forsterite 

Clay-rich diatomite [1] m   m m  m m          m m m   m    

Clay and granite [7]                           
Reservoir sediment with added CaO [11]                           
Harbour sediment and glass [13]        m                   
Reservoir sediment with added NaOH [15]                           
Clay [19]                           
Clay and APCr [20]  m m     m     m  m            
Clay and FeCr slag  [23]                           
Clay and granite waste [24]          m       m m         
Silt-clay waste and sewage sludge [25]                           
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Fig. 1. Lightweight aggregate (LWA) manufacturing process flowchart and typical clay LWA end 
product [1].
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Fig. 2. Relationships between raw material characteristics, production parameters and mechanical 
properties, showing the pore structure as an intermediate variable. 
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Fig. 3. Schematic of an ideal pore structure (left) and typical pore structure of clay LWA (right). 
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Fig. 4. SEM micrographs of fracture surface of a clay LWA granule, taken from Sustainability 
Research Institute SEM archive (unpublished data): (a) LWA core pore structure, (b) core at a higher 
magnification, (c) LWA shell cross-section and, (d) shell cross section at a higher magnification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



22 
 

 
Fig. 5. Relationship between particle density and water absorption of the reviewed manufactured LWAs. Lytag: straight black line, Lightweight expanded 
clay aggregate (LECA): brown dashed line, Trefoil: blue dashed line. 
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