49 research outputs found

    Taste fiber responses during reinnervation of fungiform papillae

    Full text link
    Crushing or transecting the chorda tympani nerve of the gerbil ( Meriones unguiculatus ) caused ipsilateral degeneration of taste buds in the fungiform papillae. In less than two weeks some taste fibers regenerated into the tongue and formed new taste buds and receptor cells. The recovery process was evaluated electrophysiologically in 53 gerbils by acute recording proximal to the nerve injury site. Initially the chorda tympani was electrically silent. In gerbils tested at later times spontaneous activity appeared. This was followed by responses to pressure on the tongue. Taste responses returned as early as dasy 11. The receptive field of regenerated taste fibers was limited to a small number of fungiform papillae. Taste responses were always associasted with the presence of one or more taste buds in the receptive field. Taste buds identified as responsive to chemicals contained some fusiform cells. We found thast the taste responses of single fiber, few-fiber and multi-unit preparations reflected the diversity of responses found in normal taste axons as determined by recording from 26 normal single fibers and 27 normal whole nerves. The early emergence of a variety of fiber types and responses to many chemicals in regeneration is inconsistent with the proposition that the relative chemical responsiveness of a receptor cell is strictly a function of its age; the response of a given young taste receptor is not necessarily limited to a few of the standard taste stimulants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49998/1/901720406_ftp.pd

    Collinear laser spectroscopy of atomic cadmium

    Full text link
    Hyperfine structure AA and BB factors of the atomic 5s\,5p\,\; ^3\rm{P}_2 \rightarrow 5s\,6s\,\; ^3\rm{S}_1 transition are determined from collinear laser spectroscopy data of 107−123^{107-123}Cd and 111m−123m^{111m-123m}Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s1/2s_{1/2} and d5/2d_{5/2} nuclear ground states and isomeric h11/2h_{11/2} states is evaluated and a linear relationship is observed for all nuclear states except s1/2s_{1/2}. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5s\,5p\,\; ^3\mathrm{P}_2 level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.Comment: 12 pages, 5 figure

    Neural basis of developing salt taste sensation: Response changes in fetal, postnatal, and adult sheep

    Full text link
    To learn whether salt taste responses change during mammalian development, we recorded from multifiber preparations of the chorda tympani while stimulating the anterior tongue in sheep fetuses, lambs, and adults. Stimuli were 0.5 M NH4C1, KC1, NaCl, and LiCl, and 0.05–0.75 M concentration series of the first three salts. Ultrastructural studies were made of taste buds at different ages to determine whether morphological elements such as microvilli and tight junctions are present in young fetuses. Substantial changes occur in relative salt taste responses, throughout development. In fetuses that are beginning the last third of gestation, NaCl and LiCl elicit much smaller response magnitudes than NH4C1 and KC1. Throughout the rest of gestation and postnatally, the NaCl and LiCl responses gradually increase in magnitude relative to NH4C1 and KCL In adults, NaCl, LiCl, and NH4Cl all elicit similar response magnitudes and KC1 is less effective as a taste stimulus. At ages when response ratios for the 0.5 M salts are changing, there are no changes in shapes of the response/concentration functions for individual salts. Furthermore, microvilli are present on taste bud cell apices and tight junctions are found between cells in the youngest fetuses studied. Therefore, initial stimulus-receptor membrane contacts are probably similar to those in adults. Our data suggest that different membrane components interact with the various monochloride salts and that taste receptors contain different proportions of these various membrane components at different developmental stages. Therefore young taste bud cells do not have the same salt response characteristics as mature cells, and a changing neural substrate underlies development of salt taste function, both pre- and postnatally.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50018/1/902150207_ftp.pd

    Structural trends in atomic nuclei from laser spectroscopy of tin

    Get PDF
    Tin is the chemical element with the largest number of stable isotopes. Its complete proton shell, comparable with the closed electron shells in the chemically inert noble gases, is not a mere precursor to extended stability; since the protons carry the nuclear charge, their spatial arrangement also drives the nuclear electromagnetism. We report high-precision measurements of the electromagnetic moments and isomeric differences in charge radii between the lowest 1/2(+), 3/2(+), and 11/2(-) states in Sn117-131, obtained by collinear laser spectroscopy. Supported by state-of-the-art atomic-structure calculations, the data accurately show a considerable attenuation of the quadrupole moments in the closed-shell tin isotopes relative to those of cadmium, with two protons less. Linear and quadratic mass-dependent trends are observed. While microscopic density functional theory explains the global behaviour of the measured quantities, interpretation of the local patterns demands higher-fidelity modelling. Measurements of the hyperfine structure of chemical elements isotopes provide unique insight into the atomic nucleus in a nuclear model-independent way. The authors present collinear laser spectroscopy data obtained at the CERN ISOLDE and measure hyperfine splitting along a long chain of odd-mass tin isotopes.Peer reviewe

    Impact of buffer gas quenching on the S-1(0) -> P-1(1) ground-state atomic transition in nobelium

    Get PDF
    International audienceUsing the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are currently unknown

    Quadrupole moments of odd-A ⁔³⁻⁶³Mn: Onset of collectivity towards N = 40

    Get PDF
    The spectroscopic quadrupole moments of the odd–even Mn isotopes between N=28 and N=38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE’s cooler and buncher (ISCOOL) was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1Îœg9/2and 2Îœd5/2orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N=36 onwards. Specifically, the inclusion of the 2Îœd5/2orbital induces an increase in neutron and proton excitations across the reduced gaps at N=40and Z=28, leading to an increase in deformation above N=36

    Nuclear charge radii of ⁶ÂČ⁻⁞⁰Zn and their dependence on cross-shell proton excitations

    Get PDF
    Nuclear charge radii of ⁶ÂČ⁻⁞⁰Zn have been determined using collinear laser spectroscopy of bunched ion beams at CERN-ISOLDE. The subtle variations of observed charge radii, both within one isotope and along the full range of neutron numbers, are found to be well described in terms of the proton excitations across the Z = 28 shell gap, as predicted by large-scale shell model calculations. It comprehensively explains the changes in isomer-to-ground state mean square charge radii of ⁶âč⁻⁷âčZn, the inversion of the odd-even staggering around N = 40 and the odd-even staggering systematics of the Zn charge radii. With two protons above Z = 28, the observed charge radii of the Zn isotopic chain show a cumulative effect of different aspects of nuclear structure including single particle structure, shell closure, correlations and deformations near the proposed doubly magic nuclei, ⁶⁞Ni and ⁷⁞Ni
    corecore