3,630 research outputs found
New constrains on Gliese 86 B
We present the results of multi epochs imaging observations of the companion
to the planetary host Gliese 86. Associated to radial velocity measurements,
this study aimed at characterizing dynamically the orbital properties and the
mass of this companion (here after Gliese 86 B), but also at investigating the
possible history of this particular system. We used the adaptive optics
instrument NACO at the ESO Very Large Telescope to obtain deep coronographic
imaging in order to determine new photometric and astrometric measurements of
Gliese 86 B. Part of the orbit is resolved. The photometry of Gliese B
indicates colors compatible with a ~70 Jupiter mass brown dwarf or a white
dwarf. Both types of objects allow to fit the available, still limited
astrometric data. Besides, if we attribute the long term radial velocity
residual drift observed for Gliese A to B, then the mass of the latter object
is ~0.5 Msun. We analyse both astrometric and radial velocity data to propose
first orbital parameters for Gliese B. Assuming Gliese B is a ~0.5 Msun white
dwarf, we explore the constraints induced by this hypothesis and refine the
parameters of the system.Comment: 10 pages, 18 figures, accepted in A&
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
Deep search for companions to probable young brown dwarfs
We have obtained high contrast images of four nearby, faint, and very low
mass objects 2MASSJ04351455-1414468, SDSSJ044337.61+000205.1,
2MASSJ06085283-2753583 and 2MASSJ06524851-5741376 (here after 2MASS0435-14,
SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as
probable isolated young brown dwarfs. Our goal was to search for binary
companions down to the planetary mass regime. We used the NAOS-CONICA adaptive
optics instrument (NACO) and its unique capability to sense the wavefront in
the near-infrared to acquire sharp images of the four systems in Ks, with a
field of view of 28"*28". Additional J and L' imaging and follow-up
observations at a second epoch were obtained for 2MASS0652-57. With a typical
contrast DKs= 4.0-7.0 mag, our observations are sensitive down to the planetary
mass regime considering a minimum age of 10 to 120 Myr for these systems. No
additional point sources are detected in the environment of 2MASS0435-14,
SDSS0443+00 and 2MASS0608-27 between 0.1-12" (i.e about 2 to 250 AU at 20 pc).
2MASS0652-57 is resolved as a \sim230 mas binary. Follow-up observations reject
a background contaminate, resolve the orbital motion of the pair, and confirm
with high confidence that the system is physically bound. The J, Ks and L'
photometry suggest a q\sim0.7-0.8 mass ratio binary with a probable semi-major
axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less
constrained in terms of age determination. Further analysis would be necessary
to confirm its youth. It would then be interesting to determine its orbital and
physical properties to derive the system's dynamical mass and to test
evolutionary model predictions.Comment: Research note, 5 pages, 2 tables and 3 figures, accepted to A&
A library of near-infrared integral field spectra of young M-L dwarfs
We present a library of near-infrared (1.1-2.45 microns) medium-resolution
(R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of
companions with known ages and of isolated objects. We use it to (re)derive the
NIR spectral types, luminosities and physical parameters of the targets, and to
test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral
types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and
M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B,
DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX
models yield close Teff and log g estimates for each sources. The models seem
to evidence a 600-300+600 K drop of the effective temperature at the M-L
transition. Assuming the former temperatures are correct, we derive new mass
estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4,
OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range.
We combine the empirical luminosities of the M9.5-L0 sources to the Teff to
derive semi-empirical radii estimates that do not match "hot-start"
evolutionary models predictions at 1-3 Myr. We use complementary data to
demonstrate that atmospheric models are able to reproduce the combined optical
and infrared spectral energy distribution, together with the near-infrared
spectra of these sources simultaneously. But the models still fail to represent
the dominant features in the optical. This issue casts doubts on the ability of
these models to predict correct effective temperatures from near-infrared
spectra alone. We advocate the use of photometric and spectroscopic data
covering a broad range of wavelengths to study the properties of very low mass
young companions to be detected with the planet imagers (Subaru/SCExAO,
LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).Comment: 27 pages, 14 tables, 19 figures, accepted for publication in
Astronomy & Astrophysic
Controlling the charge environment of single quantum dots in a photonic-crystal cavity
We demonstrate that the presence of charge around a semiconductor quantum dot
(QD) strongly affects its optical properties and produces non-resonant coupling
to the modes of a microcavity. We first show that, besides (multi)exciton
lines, a QD generates a spectrally broad emission which efficiently couples to
cavity modes. Its temporal dynamics shows that it is related to the Coulomb
interaction between the QD (multi)excitons and carriers in the adjacent wetting
layer. This mechanism can be suppressed by the application of an electric
field, making the QD closer to an ideal two-level system.Comment: 12 pages, 4 figure
Search for cool giant exoplanets around young and nearby stars - VLT/NaCo near-infrared phase-coronagraphic and differential imaging
[Abridged] Context. Spectral differential imaging (SDI) is part of the
observing strategy of current and future high-contrast imaging instruments. It
aims to reduce the stellar speckles that prevent the detection of cool planets
by using in/out methane-band images. It attenuates the signature of off-axis
companions to the star, such as angular differential imaging (ADI). However,
this attenuation depends on the spectral properties of the low-mass companions
we are searching for. The implications of this particularity on estimating the
detection limits have been poorly explored so far. Aims. We perform an imaging
survey to search for cool (Teff<1000-1300 K) giant planets at separations as
close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data
taking the photometric bias into account. This will lead to a better view of
the SDI performance. Methods. We observed a selected sample of 16 stars (age <
200 Myr, d < 25 pc) with the phase-mask coronagraph, SDI, and ADI modes of
VLT/NaCo. Results. We do not detect any companions. As for the sensitivity
limits, we argue that the SDI residual noise cannot be converted into mass
limits because it represents a differential flux, unlike the case of
single-band images. This results in degeneracies for the mass limits, which may
be removed with the use of single-band constraints. We instead employ a method
of directly determining the mass limits. The survey is sensitive to cool giant
planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions. For
close-in separations, the optimal regime for SDI corresponds to SDI flux ratios
>2. According to the BT-Settl model, this translates into Teff<800 K. The
methods described here can be applied to the data interpretation of SPHERE. We
expect better performance with the dual-band imager IRDIS, thanks to more
suitable filter characteristics and better image quality.Comment: 19 pages, 16 figures, accepted for publication in A&A, version
including language editin
Measurement of the current-phase relation of superconducting atomic contacts
We have probed the current-phase relation of an atomic contact placed with a
tunnel junction in a small superconducting loop. The measurements are in
quantitative agreement with the predictions of a resistively shunted SQUID
model in which the Josephson coupling of the contact is calculated using the
independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
Near-infrared integral-field spectra of the planet/brown dwarf companion AB Pic b
Chauvin et al. 2005 imaged a co-moving companion at ~260 AU from the young
star AB Pic A. Evolutionary models predictions based on J H K photometry of AB
Pic b suggested a mass of ~13 - 14 MJup, placing the object at the
deuterium-burning boundary. We used the adaptive-optics-fed integral field
spectrograph SINFONI to obtain high quality medium-resolution spectra of AB Pic
b (R = 1500-2000) over the 1.1 - 2.5 microns range. Our analysis relies on the
comparison of our spectra to young standard templates and to the latest
libraries of synthetic spectra developed by the Lyon's Group. AB Pic b is
confirmed to be a young early-L dwarf companion. We derive a spectral type
L0-L1 and find several features indicative of intermediate gravity atmosphere.
A comparison to synthetic spectra yields Teff = 2000+100-300 K and log(g) = 4
+- 0.5 dex. The determination of the derived atmospheric parameters of AB Pic b
is limited by a non-perfect match of current atmosphere spectra with our
near-infrared observations of AB Pic b. The current treatment of dust settling
and missing molecular opacity lines in the atmosphere models could be
responsible. By combining the observed photometry, the surface fluxes from
atmosphere models and the known distance of the system, we derive new mass,
luminosity and radius estimates of AB Pic b. They confirm independently the
evolutionary model predictions. We finally review the current methods used to
characterize planetary mass companions and discuss them in the perspective of
future planet deep imaging surveys.Comment: 8 pages, 8 figure
beta Pic b position relative to the Debris Disk
Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a
young star surrounded with a disk, extensively studied for more than 20 years.
We showed that if located on an inclined orbit, the planet could explain
several peculiarities of {\beta} Pictoris system. However, the available data
did not permit to measure the inclination of {\beta} Pic b with respect to the
disk, and in particular to establish in which component of the disk - the main,
extended disk or the inner inclined component/disk-, the planet was located.
Comparison between the observed planet position and the disk orientation
measured on previous imaging data was not an option because of potential biases
in the measurements. Aims. Our aim is to measure precisely the planet location
with respect to the dust disk using a single high resolution image, and
correcting for systematics or errors that degrades the precision of the disk
and planet relative position measurements. Methods. We gathered new NaCo data
at Ks band, with a set-up optimized to derive simultaneously the orientation(s)
of the disk(s) and that of the planet. Results. We show that the projected
position of {\beta} Pic b is above the midplane of the main disk. With the
current data and knowledge on the system, this implies that {\beta} Pic b
cannot be located in the main disk. The data rather suggest the planet being
located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic
- …