38 research outputs found

    Senda Darwin Biological Station: Long-term ecological research at the interface between science and society

    Get PDF
    IndexaciĂłn: Web of Science; Scielo.La EstaciĂłn BiolĂłgica Senda Darwin (EBSD) constituye un centro de investigaciĂłn inmerso en el paisaje rural del norte de la Isla de ChiloĂ© (42Âș S), donde fragmentos del bosque siempreverde original coexisten con praderas de uso ganadero, turberas de Sphagnum, matorrales sucesionales, plantaciones de Eucalyptus y otras formaciones de origen antropogĂ©nico. Desde 1994 hemos realizado estudios de largo plazo centrados en algunas especies de plantas (e.g., Pilgerodendron uviferum D. Don) y animales (e.g., Aphrastura spinicauda Gmelin, Dromiciops gliroides [Thomas]) catalogados como amenazados o escasamente conocidos y en ecosistemas nativos de importancia regional y global (e.g., turberas de Sphagnum, bosque Valdiviano y NordpatagĂłnico). Las investigaciones han considerado las respuestas de las especies y de los ecosistemas frente al cambio antropogĂ©nico del paisaje y cambio climĂĄtico, asĂ­ como los efectos de diferentes formas de manejo. Este escenario es semejante al de otras regiones de Chile y LatinoamĂ©rica lo que da generalidad a nuestros resultados y modelos. En este perĂ­odo, investigadores asociados a la EBSD han producido mĂĄs de un centenar de publicaciones en revistas nacionales e internacionales y 30 tesis de pre y postgrado. Entendiendo el papel clave de los seres humanos en los procesos ecolĂłgicos de la zona rural, la EBSD ha desarrollado un programa de educaciĂłn ecolĂłgica y vinculaciĂłn del avance cientĂ­fico con la sociedad local y nacional. La integraciĂłn de la EBSD a la naciente red de Sitios de Estudios Socio-EcolĂłgicos de Largo Plazo en Chile consolidarĂĄ y fortalecerĂĄ la investigaciĂłn bĂĄsica y aplicada que realizamos para proyectarla hacia la siguiente dĂ©cada.Senda Darwin Biological Station (SDBS) is a field research center immersed in the rural landscape of northern ChiloĂ© island (42Âș S), where remnant patches of the original evergreen forests coexist with open pastures, secondary successional shrublands, Sphagnum bogs, Eucalyptus plantations and other anthropogenic cover types, constituting an agricultural frontier similar to other regions in Chile and Latin America. Since 1994, we have conducted long-term research on selected species of plants (e.g., Pilgerodendron uviferum) and animals (e.g., Aphrastura spinicauda, Dromiciops glirioides) that are considered threatened, poorly known or important for their ecological functions in local ecosystems, and on ecosystems of regional and global relevance (e.g., Sphagnum bogs, North Patagonian and Valdivian rain forests). Research has assessed the responses of species and ecosystems to anthropogenic land-use change, climate change, and the impact of management. During this period, more than 100 scientific publications in national and international journals, and 30 theses (graduate and undergraduate) have been produced by scientists and students associated with SDBS. Because of our understanding of the key role that humans play in ecological processes at this agricultural frontier, since the establishment of SDBS we have been committed to creative research on the communication of science to society and ecological education. The integration of SDBS to the nascent Chilean network of long-term socio-ecological research will consolidate and strengthen basic and applied research to project our work into the next decade.http://ref.scielo.org/vbm4r

    Late Neoproterozoic-Paleozoic geodynamic evolution of the Argentine-Chilean Andes and the Antarctic Peninsula

    Get PDF
    Fil: Heredia, Nemesio. Instituto GeolĂłgico y Minero de España; España.Fil: GarcĂ­a Sansegundo, JoaquĂ­n. Universidad de Oviedo; España.Fil: Gallastegui, Gloria. Instituto GeolĂłgico y Minero de España; España.Fil: Farias, Pedro. Universidad de Oviedo; España.Fil: Giacosa, Raul Eduardo. SecretarĂ­a de Industria y MinerĂ­a. Servicio GeolĂłgico Minero Argentino; Argentina.Fil: Alonso, Juan. Universidad de Oviedo; España.Fil: Busquets, Pere. Universidad de Barcelona; España.Fil: Charrier, Reynaldo. Universidad de Chile; Chile. Universidad AndrĂ©s Bello; Chile.Fil: Clariana, Pilar. Instituto GeolĂłgico y Minero de España; España.Fil: Colombo, Ferran. Universidad de Barcelona; España.Fil: Cuesta, AndrĂ©s. Universidad de Oviedo; España.Fil: Gallastegui, Jorge. Universidad de Oviedo; España.Fil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentina.Fil: GonzĂĄlez MenĂ©ndez, Luis. Instituto GeolĂłgico y Minero de España; España.Fil: Limarino, Carlos Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina.Fil: MartĂ­n GonzĂĄlez, Fidel. Universidad Rey Juan Carlos; EspañaFil: MĂ©ndez Bedia, Isabel. Universidad de Oviedo; España.Fil: Pedreira, David. Universidad de Oviedo; España.Fil: Quintana, Luis. Universidad de Oviedo; España. Instituto GeolĂłgico y Minero de España; España.Fil: RodrĂ­guez FernĂĄndez, Luis. Universidad de Oviedo; España.Fil: Rubio Ordóñez, Álvaro. Universidad de Oviedo; España.Fil: Seggiaro, Raul Eudocio. Universidad Nacional de Salta; Argentina. SecretarĂ­a de Industria y MinerĂ­a. Servicio GeolĂłgico Minero Argentino; Argentina.Fil: Serra Varela, Samanta. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de InvestigaciĂłn en PaleobiologĂ­a y GeologĂ­a; Argentina.Fil: Spalletti, Luis Antonio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Investigaciones GeolĂłgicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones GeolĂłgicas; Argentina.Fil: Cardo, Andrea Romina. Universidad Nacional de San Juan; Argentina. SecretarĂ­a de Industria y MinerĂ­a. Servicio GeolĂłgico Minero Argentino; Argentina.Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Giacosa, Raul Eduardo. Universidad Nacional de RĂ­o Negro. Instituto de Investigaciones en PaleobiologĂ­a y GeologĂ­a. RĂ­o Negro, Argentina.During the late Neoproterozoic and Paleozoic times, the Argentine-Chilean Andes -and since the late Paleozoic the Antarctic Peninsula- formed part of the southwestern margin of Gondwana. During this period of time, a set of continental fragments of variable extension and allochtonie was successively accreted to that margin, resulted in six Paleozoic orogenies of different temporal and spatial extension: Pampean (Ediacaran-early Cambrian), Famatinian (Middle Ordovician-Silurian), Chanic (Middle Devonian-early Carboniferous), Ocloyic (Middle Ordovician-Devonian), Gondwanan (Middle Devonian-middle Permian) and Tabarin (late Permian-Triassic). All these orogenies had a collisional character, with the exception of the Tabarin and the Gondwanan south of 38Âș SDurante el Neoproterozoico tardĂ­o y el Paleozoico, el actual segmento argentino-chileno de la Cordillera de los Andes y, desde finales del Paleozoico, la PenĂ­nsula AntĂĄrtica, formaron parte del margen suroccidental de Gondwana. Durante este periodo de tiempo, a dicho margen se fue acrecionando un conjunto de fragmentos continentales de tamaño y aloctonĂ­a variable, dando lugar en el Paleozoico a seis orogenias de diferente extensiĂłn temporal y espacial: Pampeana (EdiacĂĄrico-CĂĄmbrico temprano), Famatiniana (OrdovĂ­cico Medio-SilĂșrico), ChĂĄnica (DevĂłnico Medio-CarbonĂ­fero temprano), OclĂłyica (OrdovĂ­cico Medio-DevĂłnico), GondwĂĄnica (DevĂłnico Medio-PĂ©rmico medio) y Tabarin (PĂ©rmico tardĂ­o-TriĂĄsico). Todas estas orogenias son colisionales, salvo la Tabarin y la GondwĂĄnica al sur de los 38Âș S

    A new species of Alsodes (Anura: Alsodidae) from Altos de Cantillana, central Chile

    No full text
    Charrier, Andrés, Correa, Claudio, Castro, Camila, Méndez, Marco A. (2015): A new species of Alsodes (Anura: Alsodidae) from Altos de Cantillana, central Chile. Zootaxa 3915 (4): 540-550, DOI: http://dx.doi.org/10.11646/zootaxa.3915.4.

    Alsodes cantillanensis Charrier, Correa, Castro & MĂ©ndez, 2015, sp. nov.

    No full text
    <i>Alsodes cantillanensis</i> sp. nov. <p> <b>Holotype.</b> A male (SSUC-Am-168; Fig. 1 A and Fig. 2) collected by Andrés Charrier and Alexander Baus in Quebrada Infiernillo, Fundo San Juan de Piche, Altos de Cantillana mountains (33°55’32.6”S, 71°02’34.6”W, 850 m a.s.l.; Fig. 3), on 3 August 2011.</p> <p> <b>Paratype.</b> A female (SSUC-Am-169) collected by Andrés Charrier and Alexander Baus at the same place and date as the holotype.</p> <p> <b>Diagnosis.</b> <i>Alsodes cantillanensis</i> can be distinguished from all other congeneric species for the following combination of characters: 1) thorny patches of the chest of males with spines uniformly distributed; 2) head with a triangle between the posterior border of the eyes and the snout tip, which contrasts with the background coloration; 3) superior part of the iris gold-yellowish brilliant, almost uniform; 4) postocular fold well-developed, extending beyond of the insertions of arms; 5) snout slightly truncated in dorsal and lateral profile; 6) dorsal skin smooth; 7) dorsal coloration ochre (holotype) or orange (paratype), with small and diffuse dark spots irregularly distributed; and 8) posterior legs slightly barred.</p> <p> <b>Description of the holotype</b>. Male, SVL 45.9 mm. Head 1.24 times wider than long (Figs. 2 A and 2B). HL 34.4% the SVL. Snout slightly truncated in lateral view (Fig. 2 C). Nostrils with scarce relief and dorsolateral orientation, located midway between the tip of the snout and the anterior border of the eye. ID a quarter of the HW. EL 1.4 times the ID. Well-developed canthus rostralis, with a dark coloration on its underside, extending beyond the insertions of arms. Tympanic ring absent. Supratympanic fold well developed, without granulations. Chest with two clearly delimited bilateral nuptial round thorny patches. Spines of the chest patches minute, whitish and uniformly distributed (Fig. 2 B). White thorny excrescences on the interior of the first and second fingers (Fig. 2 D). Dorsum, arms, legs and ventral surface of body smooth. Granular flanks. Hands without webbing. Fingers with white rounded tips, in order of increasing length: II <I <IV <III (Figs. 2 D and 2E). Outer metacarpal tubercle rounded, and bigger than the others tubercles (Fig. 2 E). Inner metacarpal tubercle ovoid, smaller than the outer, but also well developed. One subarticular tubercle on digits I and II, and two on digits II and IV (Fig. 2 E). Posterior legs with slightly marked dark transversal bars. Feet without webbing. Toes long, with white rounded tips, without lateral fringes, in order of increasing length: I <II <V <III <IV (Fig. 2 F). Inner and outer metatarsal tubercles present, similar in size, the inner ovoid and the outer rounded. General dorsal coloration ochre, with a lighter triangle on the head between the posterior border of the eyes and the snout tip. A very thin yellowish vertebral line in the posterior half of the dorsum. Ventral coloration whitish. Measurements of the holotype (in mm) are, SVL: 45.9; HL: 15.8; HW: 19.6; IOD: 5.6; ID: 5.1; EL: 6.9; ThL: 24.6; TL: 24.1; FL: 41.4.</p> <p> <b>Comparison with congeneric species.</b> <i>Alsodes cantillanensis</i> can be distinguished from <i>A. nodosus</i>, its sister species, for the following characters (Fig. 1) (characters of <i>A. nodosus</i> in parentheses): superior part of the iris gold-yellowish, almost uniform (black, with small yellow spots), a light triangle on the head (absent), dorsal skin smooth (granular), and a regular arrangement of spines in the chest patches (spines arranged in at least nine small clusters in each chest patch) (see description of <i>A. nodosus</i> in Cuevas 2013). Externally, <i>A. cantillanensis</i> resembles more <i>A. vanzolinii</i> Donoso-Barros: both taxa have dorsal smooth skin, a triangle of lighter color on the head (yellowish and much more marked in <i>A. vanzolinii</i>, where it contrasts with the lateral dark coloration of the head), and the upper part of the iris yellowish (although in <i>A. vanzolinii</i> the iris coloration is more discontinuous; see Fig. 1 of Rabanal & Alarcón 2010). However, <i>A. vanzolinii</i> has the dorsum dark brownish with yellowish spots and the posterior extremities strongly barred (Donoso-Barros 1974; Formas 1980; see Fig. 1 of Rabanal & Alarcón 2010). Furthermore, the phylogenetic analyses show that <i>A. cantillanensis</i> is closer to <i>A. nodosus</i> than to <i>A. vanzolinii</i>; these three species constitute one of the two main clades in which the genus is divided (Fig. 4). <i>Alsodes cantillanensis</i> also can be distinguished from the species of the other main clade by other characters. For example, the new taxon has no webbing toes, unlike <i>A. gargola</i>, <i>A. montanus</i>, <i>A. pehuenche</i>, and <i>A. tumultuosus</i>; it lacks of a black triangular zone on top of head extending backwards from space between the eyes, present in <i>A. hugoi</i>, <i>A. igneus</i> Cuevas & Formas, <i>A. barrioi</i> Veloso, Díaz, Iturra & Penna, and <i>A. norae</i> Cuevas; and it also differs of <i>A. monticola</i>, which has a green-grass dorsal color, of <i>A. verrucosus</i> Philippi which has the dorsal skin granular, and of <i>A. vittatus</i>, which has a well-defined vertebral line extending from the tip of the snout to the vent. Finally, <i>A. cantillanensis</i> lacks of folds of loose skin on the lateral areas of the body like <i>A. australis</i>, <i>A. coppingeri</i>, and <i>A. kaweshkari</i>. Furthermore, all these species have allopatric distributions with respect to <i>A. cantillanensis</i> (see Cuevas & Formas 2005).</p> <p> <b>Etymology.</b> The specific name of the new taxon is the genitive Latin form of Cantillana, part of the name (Altos de Cantillana) of a mountain system with foothills covered by forests close to Santiago (65 km).</p> <p> <b>Variation.</b> Outside of the obvious differences due to the sex of the specimens of the type series (patches of spines on the chest and arms thicker in the male), the most remarkable difference between them is the dorsum background coloration: the holotype is ochre, with a lighter triangle on the head, and the paratype is orange, with the triangle reddish-orange. The holotype and other individuals observed in the type locality and in Quebrada Lisboa (see below) had a thin yellow vertebral line in the posterior part of the dorsum. These individuals exhibited an overall ochre coloration, but with different tones. Measurements of the paratype (in mm) are, SVL: 44.2; HL: 14.9; HW: 18.7; IOD: 5.3; ID: 4.7; EL: 6.4; ThL: 24.6; TL: 25.3; FL: 39.6.</p> <p> <b>Distribution and natural history.</b> The new species is only known from the type locality and one nearby site, Quebrada Lisboa (33°55’33.6”S, 71°01’05.3”W, 729 m a.s.l), both within the Natural Sanctuary San Juan de Piche, in the western slopes of the Altos de Cantillana mountains (Fig. 3). Altos de Cantillana mountains have a maximum height of 2281 m a.s.l. and are located in an area with Mediterranean climate that has less than 600 mm of rain per year and an average temperature of 10.7°C (Costa 2002). <i>Alsodes cantillanensis</i> inhabits mixed old grown forest of <i>Nothofagus macrocarpa</i>, <i>Drymis winteri</i>, <i>Mirtacea</i> sp., and vains of the genus <i>Proustia</i>. Specimens of the type series were found under rocks under the water during spring in the morning. Others (not collected) were found under a thick cover of litter fall near the stream (30 cm) and under logs close to the water. Additional specimens were observed at night walking along the stream of Quebrada Lisboa. In the creek at the type locality, the amphibians <i>Alsodes nodosus</i> (“sapo arriero”) and <i>Pleurodema thaul</i> (four-eyed frog) also were found.</p> <p> <b>Molecular data and phylogenetic relationships</b>. The combined alignment of the four fragments had 3024 nucleotide sites in length (318 of cytb, 1999 of the fragment 12S-16S, 310 of rhod, and 397 of SINA). Only the fragment 12S-16S showed gaps (36 sites, including the outgroup). MP analysis including the sites with gaps was based on 359 parsimony-informative characters. Thirteen most parsimonious trees were found, with a length of 878 steps, which differ only in the relative position of <i>A. gargola</i>, <i>A. igneus</i>, <i>A. neuquensis</i>, <i>A. norae</i>, and <i>A. pehuenche</i> (data not shown; see consensus tree in Fig. S1). MP analysis treating gaps as missing also produced 13 trees (829 steps, 339 parsimony-informative characters) differing only in the relative position of the same taxa (data not shown). Regarding the BI, the post burn-in mean ln-likelihood values of the two independent analyses were - 8296.26 and -8297.08. Convergence and mixing of chains were achieved according to ASDSF (<0.002), ESS (> 200), and PSRF (0.9999–1.0001) values. Results of these analyses are shown as the 50% majority-rule consensus tree (Fig. 4), where bootstrap values of MP analysis including sites with gaps were added. Topologies of MP and BI analyses were highly congruent, showing two main clades for the genus with high statistical support (Fig. 4), which agrees with the hypothesis of Blotto <i>et al.</i> (2013). One clade is comprised by <i>A. nodosus</i>, <i>A. cantillanensis</i>, and <i>A. vanzolinii</i>, including the specimen identified a priori as <i>A.</i> cf. <i>vanzolinii</i>, and the other by the rest of <i>Alsodes</i> species. Within this main clade, two groups can be recognized also with high MP bootstrap support and Bayesian posterior probability: one comprised by all samples of <i>A. nodosus</i> (including one specimen from Pemehue, here labeled as <i>A.</i> aff. <i>nodosus</i>, a candidate species according to Blotto <i>et al.</i> 2013) and the two samples of the new species, and the other by the specimen of <i>A. vanzolinii</i> from Ramadillas (type locality) and the specimen of <i>A.</i> cf. <i>vanzolinii</i> from R.N. Los Queules. Within the second main clade, the group comprised by <i>A. coppingeri</i>, <i>A. valdiviensis</i>, and <i>A. verrucosus</i> diverges first, followed successively by <i>A. hugoi</i> plus <i>A. tumultuosus</i>, and <i>A. barrioi</i> (Fig. 4). The rest of species, <i>A. gargola</i>, <i>A. igneus</i>, <i>A. neuquensis</i>, <i>A. norae</i>, and <i>A. pehuenche</i>, form a politomy in the consensus tree. In summary, MP and BI analyses show that all samples of <i>A. nodosus</i> group with high support values and constitutes the sister group of the new species, ratifying the morphological distinction between both taxa (Fig. 1). However, the more compelling evidence to support the specific status of <i>A. cantillanensis</i> is that is sympatric and clearly diagnosable of <i>A. nodosus</i> at Quebrada Infiernillo.</p>Published as part of <i>Charrier, AndrĂ©s, Correa, Claudio, Castro, Camila & MĂ©ndez, Marco A., 2015, A new species of Alsodes (Anura: Alsodidae) from Altos de Cantillana, central Chile, pp. 540-550 in Zootaxa 3915 (4)</i> on pages 542-544, DOI: 10.11646/zootaxa.3915.4.5, <a href="http://zenodo.org/record/238372">http://zenodo.org/record/238372</a&gt

    FIGURE 2 in A new species of Alsodes (Anura: Alsodidae) from Altos de Cantillana, central Chile

    No full text
    FIGURE 2. Morphological details of the holotype of Alsodes cantillanensis sp. nov. (SSUC-Am- 168). A. Dorsal view of the head. B. Ventral view of the head. Note the spines patches on the chest. C. Lateral view of the head. D. Dorsal view of the left hand. Note the nuptial pads on fingers one and two, formed by small whitish spines. E. Ventral view of the left hand. F. Ventral view of the right foot. Bars equal 5 mm

    Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°-35°S)

    No full text
    International audienceWe address the question of the late Cenozoic geomorphological evolution of the central Chile Andes (33°-35°S), using uplift markers, river incision, previous and new ages of volcanic bodies, and new fission track ages. The uplift markers consist of relicts of high elevated peneplains that evidence >2 km of regional surface uplift lasting ~2 Ma with variable amount along an E-W transect. The eastern Coastal Cordillera was uplifted 1.5-2.1 km at 33-34°S and 2.5 at 33°45'S and ~1.5 km at 34°30'S. Erosional response to uplift was characterized by the retreat of a sharp knickpoint with celerities between 10 and 40 mm a-1. Extrapolation using a stream power law shows that uplift began shortly before 4 Ma or at 10.5-4.6 Ma (7.6 Ma central age) depending on the morphostructural units involved. The first alternative implies simultaneous uplift of the continental margin. The second model (the most reliable one) implies that the uplift affected together the eastern Coastal Cordillera and the Principal Cordillera, while the rest of the western fore arc subsided. This regional uplift can be mostly balanced by crustal thickening resulting from coeval shortening related to the out-of-sequence thrusting event in the Principal Cordillera and the uplift of the Frontal Cordillera. Simultaneously, emplacement of the southern edge of the flat slab subduction zone might have partially contributed to this uplift event
    corecore