343 research outputs found
Trajectory Calculation as Forecasting Support Tool for Dust Storms
In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction) at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP) forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes
uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer:Proof-of-concept in orthotopic xenograft model
PURPOSE: Urokinase-like Plasminogen Activator Receptor (uPAR) is overexpressed in a variety of carcinoma types, and therefore represents an attractive imaging target. The aim of this study was to assess the feasibility of two uPAR-targeted probes for PET and fluorescence tumor imaging in a human xenograft tongue cancer model. EXPERIMENTAL DESIGN AND RESULTS: Tumor growth of tongue cancer was monitored by bioluminescence imaging (BLI) and MRI. Either ICG-Glu-Glu-AE105 (fluorescent agent) or (64)Cu-DOTA-AE105 (PET agent) was injected systemically, and fluorescence imaging or PET/CT imaging was performed. Tissue was collected for micro-fluorescence imaging and histology. A clear fluorescent signal was detected in the primary tumor with a mean in vivo tumor-to-background ratio of 2.5. Real-time fluorescence-guided tumor resection was possible, and sub-millimeter tumor deposits could be localized. Histological analysis showed co-localization of the fluorescent signal, uPAR expression and tumor deposits. In addition, the feasibility of uPAR-guided robotic cancer surgery was demonstrated. Also, uPAR-PET imaging showed a clear and localized signal in the tongue tumors. CONCLUSIONS: This study demonstrated the feasibility of combining two uPAR-targeted probes in a preclinical head and neck cancer model. The PET modality provided preoperative non-invasive tumor imaging and the optical modality allowed for real-time fluorescence-guided tumor detection and resection. Clinical translation of this platform seems promising
A Three-Generation Family with Idiopathic Facial Palsy Suggesting an Autosomal Dominant Inheritance with High Penetrance
Idiopathic facial palsy (IFP), also known as Bell’s palsy, is a common neurologic disorder, but recurrent and familial forms are rare. This case series presents a three-generation family with idiopathic facial palsy. The mode of inheritance of IFP has previously been suggested as autosomal dominant with low or variable penetrance, but the present family indicates an autosomal dominant trait with high or complete penetrance. Chromosome microarray studies did not reveal a pathogenic copy number variation, which could enable identification of a candidate gene
Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters
Pyrolysis is a thermochemical process that permits the conversion of biomasses into energy (bio-oil and biogas) and a solid residue called biochar. The generation of biochar from lignocellulosic materials has been, for longtime, the predominant research focus. Wastewater treatment plants produce huge amounts of sludge biomass and there exists an increasing evidence for their possible reuse as a promising pyrolysis feedstock in recent literature. Though the valorization of biochars generated from lignocellulosic biomasses has been the subject of many reviews, there exists a critical knowledge gap regarding the effect of synthesis conditions of the sludge-derived biochars (SDBs) on their efficiency in the treatment of wastewater. This review critically analyzes the available literature related to SDBs characteristics and application to adsorb inorganic and organic pollutants from effluents. The physico-chemical properties and adsorption efficiency of SDBs are mainly tuned by the nature of raw sludge, pyrolysis conditions, and pre/post-treatments. Indeed, biochars originating from digested sludge have better adsorption capacities towards nutrients and heavy metals compared to those obtained from the non-digested sludge. The nutrients recovery from urban wastewater could be significantly improved when the raw sludge is mixed with lignocellulosic biomass and Mg/Ca rich materials. On the other hand, the chemical activation of sludge at reagent/sludge ratios higher than 2:1 permits to generate SDBs with adsorption capacities comparable and even better than commercial activated carbons. Moreover, the embedment/coating of SDBs with specific nanomaterials and tailored functional groups could significantly improve the adsorption capacities of various organic toxic pollutants and at the same time enhance their chemical degradation. The effect of the nature of target pollutants (organic or inorganic) on the underlying adsorption mechanisms by SDBs was also deeply reviewed. Finally, this paper provides the main application challenges as well as insights regarding the promising future directions for SDBs research and development
- …