233 research outputs found

    Citrate synthase activity does not account for age-related differences in maximum aerobic performance in House Sparrows (Passer domesticus).

    Get PDF
    We measured basal (BMR) and peak metabolic rates (PMR) in juvenile and adult House Sparrows. Juvenile birds had significantly higher BMR, but lower PMR than adult birds, despite having statistically indistinguishable body masses. We then evaluated the relation between PMR and masses of central and peripheral organs and found that pectoral muscle mass best correlated with PMR in both groups, accounting for about 35% of the variation in PMR. Because citrate synthase (CS) has such major importance in affecting the first committed step in the tricarboxylic acid cycle, we characterized CS activity levels In extracted muscles to see if this better explained age-related differences in peak aerobic performance. Surprisingly, juvenile sparrows had significantly higher CS activity levels than adults (197.8 vs. 179.0 μM g-1 min -1, respectively).This higher enzyme activity in juveniles was completely offset by their significantly smaller proportion of flight musculature relative to body mass (17.7 % in adults vs. 15.3% in juveniles). Consequently, ontogenetic changes in relative sizes of organs best accounts for agerelated differences in peak metabolic rate

    ICA-based denoising for ASL perfusion imaging

    Get PDF
    Arterial Spin Labelling (ASL) imaging derives a perfusion image by tracing the accumulation of magnetically labeled blood water in the brain. As the image generated has an intrinsically low signal to noise ratio (SNR), multiple measurements are routinely acquired and averaged, at a penalty of increased scan duration and opportunity for motion artefact. However, this strategy alone might be ineffective in clinical settings where the time available for acquisition is limited and patient motion are increased. This study investigates the use of an Independent Component Analysis (ICA) approach for denoising ASL data, and its potential for automation.72 ASL datasets (pseudo-continuous ASL; 5 different post-labeling delays: 400, 800, 1200, 1600, 2000 m s; total volumes = 60) were collected from thirty consecutive acute stroke patients. The effects of ICA-based denoising (manual and automated) where compared to two different denoising approaches, aCompCor, a Principal Component-based method, and Enhancement of Automated Blood Flow Estimates (ENABLE), an algorithm based on the removal of corrupted volumes. Multiple metrics were used to assess the changes in the quality of the data following denoising, including changes in cerebral blood flow (CBF) and arterial transit time (ATT), SNR, and repeatability. Additionally, the relationship between SNR and number of repetitions acquired was estimated before and after denoising the data.The use of an ICA-based denoising approach resulted in significantly higher mean CBF and ATT values (p [less than] 0.001), lower CBF and ATT variance (p [less than] 0.001), increased SNR (p [less than] 0.001), and improved repeatability (p [less than] 0.05) when compared to the raw data. The performance of manual and automated ICA-based denoising was comparable. These results went beyond the effects of aCompCor or ENABLE. Following ICA-based denoising, the SNR was higher using only 50% of the ASL-dataset collected than when using the whole raw data.The results show that ICA can be used to separate signal from noise in ASL data, improving the quality of the data collected. In fact, this study suggests that the acquisition time could be reduced by 50% without penalty to data quality, something that merits further study. Independent component classification and regression can be carried out either manually, following simple criteria, or automatically

    Validation of the estimation of the macrovascular contribution in multi-timepoint arterial spin labeling MRI using a 2-component kinetic model

    Get PDF
    Purpose In this paper, the ability to quantify cerebral blood flow by arterial spin labeling (ASL) was studied by investigating the separation of the macrovascular and tissue component using a 2-component model. Underlying assumptions of this model, especially the inclusion of dispersion in the analysis, were studied, as well as the temporal resolution of the ASL datasets. Methods Four different datasets were acquired: (1) 4D ASL angiography to characterize the macrovascular component and to study dispersion modeling within this component, (2) high temporal resolution ASL data to investigate the separation of the 2 components and the effect of dispersion modelling on this separation, (3) low temporal resolution ASL dataset to study the effect of the temporal resolution on the separation of the 2 components, and (4) low temporal resolution ASL data with vascular crushing. Results The model that included a gamma dispersion kernel had the best fit to the 4D ASL angiography. For the high temporal resolution ASL dataset, inclusion of the gamma dispersion kernel led to more signal included in the arterial blood volume map, which resulted in decreased cerebral blood flow values. The arterial blood volume and cerebral blood flow maps showed overall higher arterial blood volume values and lower cerebral blood flow values for the high temporal resolution dataset compared to the low temporal resolution dataset. Conclusion Inclusion of a gamma dispersion kernel resulted in better fitting of the model to the data. The separation of the macrovascular and tissue component is affected by the inclusion of a gamma dispersion kernel and the temporal resolution of the ASL dataset.Cardiovascular Aspects of Radiolog

    Partial volume correction in arterial spin labeling perfusion MRI: a method to disentangle anatomy from physiology or an analysis step too far?

    Get PDF
    The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, 'uncorrected', images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods.Neuro Imaging Researc

    Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter

    Full text link
    In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.Comment: 21 pages, 9 figure

    Do trees in UK-relevant river catchments influence fluvial flood peaks?: a systematic review

    Get PDF
    This report describes a systematic review of the evidence in support of the primary question “Do trees in UK-relevant river catchments influence fluvial flood peaks?

    Trait-matching and mass effect determine the functional response of herbivore communities to land-use intensification

    Get PDF
    Trait-based approaches represent a promising way to understand how trophic interactions shape animal communities. The approach relies on the identification of the traits that mediate the linkages between adjacent trophic levels, i.e. ‘trait-matching’. Yet, how trait-matching explains the abundance and diversity of animal communities has been barely explored. This question may be particularly critical in the context of land-use intensification, currently threatening biodiversity and associated ecosystem services. We collected a large dataset on plant and grasshopper traits from communities living in 204 grasslands, in an intensively managed agricultural landscape. We used a multi-trait approach to quantify the relative contributions of trait-matching and land-use intensification acting at both local and landscape scales on grasshopper functional diversity. We considered two key independent functional traits: incisor strength and body size of grasshopper species. Incisor strength, a resource-acquisition trait, strongly matches grasshopper feeding niche. Body size correlates with mobility traits, and may determine grasshopper dispersal abilities. Plant functional diversity positively impacted the diversity of grasshopper resource-acquisition traits, according to the degree of trait-matching observed between plants and herbivores. However, this positive effect was significantly higher in old grasslands. In addition, the presence of specific habitats in the landscape (i.e. wood and alfalfa) strongly enhanced grasshopper resource-acquisition trait diversity in the focal grassland. Finally, grasshopper body size increased with landscape simplification, although the response was modulated by local factors such as soil depth. Trait-matching between plants and herbivores was an important driver explaining the abundance and diversity of resource-acquisition traits within grasshopper communities. However, the presence of specific habitats in the surrounding landscape had also a strong influence on herbivore functional diversity in grasslands. Our study suggests that also mass effects are a central mechanism promoting higher functional diversity within animal communities in highly disturbed anthropogenic systems

    Mammary Gland Evaluation in Juvenile Toxicity Studies: Temporal Developmental Patterns in the Male and Female Harlan Sprague-Dawley Rat

    Get PDF
    There are currently no reports describing mammary gland development in the Harlan Sprague-Dawley (HSD) rat, the current strain of choice for National Toxicology Program (NTP) testing. Our goals were to empower the NTP, contract labs, and other researchers in understanding and interpreting chemical effects in this rat strain. To delineate similarities/differences between the female and male mammary gland, data were compiled starting on embryonic day 15.5 through postnatal day 70. Mammary gland whole mounts, histology sections, and immunohistochemically stained tissues for estrogen, progesterone, and androgen receptors were evaluated in both sexes; qualitative and quantitative differences are highlighted using a comprehensive visual timeline. Research on endocrine disrupting chemicals in animal models has highlighted chemically induced mammary gland anomalies that may potentially impact human health. In order to investigate these effects within the HSD strain, 2,3,7,8-tetrachlorodibenzo-p-dioxin, diethylstilbestrol, or vehicle control was gavage dosed on gestation day 15 and 18 to demonstrate delayed, accelerated, and control mammary gland growth in offspring, respectively. We provide illustrations of normal and chemically altered mammary gland development in HSD male and female rats to help inform researchers unfamiliar with the tissue and may facilitate enhanced evaluation of both male and female mammary glands in juvenile toxicity studies

    Tumour subregion analysis of colorectal liver metastases using semi-automated clustering based on DCE-MRI: Comparison with histological subregions and impact on pharmacokinetic parameter analysis.

    Get PDF
    PURPOSE: To use a novel segmentation methodology based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to define tumour subregions of liver metastases from colorectal cancer (CRC), to compare these with histology, and to use these to compare extracted pharmacokinetic (PK) parameters between tumour subregions. MATERIALS AND METHODS: This ethically-approved prospective study recruited patients with CRC and ≥1 hepatic metastases scheduled for hepatic resection. Patients underwent DCE-MRI pre-metastasectomy. Histological sections of resection specimens were spatially matched to DCE-MRI acquisitions and used to define histological subregions of viable and non-viable tumour. A semi-automated voxel-wise image segmentation algorithm based on the DCE-MRI contrast-uptake curves was used to define imaging subregions of viable and non-viable tumour. Overlap of histologically-defined and imaging subregions was compared using the Dice similarity coefficient (DSC). DCE-MRI PK parameters were compared for the whole tumour and histology-defined and imaging-derived subregions. RESULTS: Fourteen patients were included in the analysis. Direct histological comparison with imaging was possible in nine patients. Mean DSC for viable tumour subregions defined by imaging and histology was 0.738 (range 0.540-0.930). There were significant differences between Ktrans and kep for viable and non-viable subregions (p < 0.001) and between whole lesions and viable subregions (p < 0.001). CONCLUSION: We demonstrate good concordance of viable tumour segmentation based on pre-operative DCE-MRI with a post-operative histological gold-standard. This can be used to extract viable tumour-specific values from quantitative image analysis, and could improve treatment response assessment in clinical practice

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
    corecore