1,898 research outputs found
Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment
Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 µs time resolution. Average T_e is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ~22 eV, but a similar increase in T_i is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data
Flow Dynamics And Plasma Heating Of Spheromaks In SSX
We report several new experimental results related to flow dynamics and heating from single dipole-trapped spheromaks and spheromak merging studies at SSX. Single spheromaks (stabilized with a pair of external coils, see Brown, Phys. Plasmas 13 102503 (2006)) and merged FRC-like configurations (see Brown, Phys. Plasmas 13, 056503 (2006)) are trapped in our prolate (R = 0.2 m, L = 0.6 m) copper flux conserver. Local spheromak flow is studied with two Mach probes (r(1) = rho(i) ) calibrated by time-of-flight with a fast set of magnetic probes at the edge of the device. Both Mach probes feature six ion collectors housed in a boron nitride sheath. The larger Mach probe will ultimately be used in the MST reversed field pinch. Line averaged flow is measured by ion Doppler spectroscopy (IDS) at the midplane. The SSX IDS instrument measures with 1 mu s or better time resolution the width and Doppler shift of the C-III impurity (H plasma) 229.7 nm line to determine the temperature and line-averaged flow velocity (see Cothran, RSI 77, 063504 (2006)). We find axial flows up to 100 km/s during formation of the dipole trapped spheromak. Flow returns at the wall to form a large vortex. Recent high-resolution IDS velocity measurements during spheromak merging show bi-directional outflow jets at +/- 40 km/s (nearly the Alfven speed). We also measure T-i \u3e= 80 eV and T-e \u3e= 20 eV during spheromak merging events after all plasma facing surfaces are cleaned with helium glow discharge conditioning. Transient electron heating is inferred from bursts on a four-channel soft x-ray array. The spheromaks are also characterized by a suite of magnetic probe arrays for magnetic structure B(r,t), and interferometry for n(e) . Finally, we are designing a new oblate, trapezoidal flux conserver for FRC studies. Equilibrium and dynamical simulations suggest that a tilt-stable, oblate FRC can be formed by spheromak merging in the new flux conserver
Sounding stellar cycles with Kepler - I. Strategy for selecting targets
The long-term monitoring and high photometric precision of the Kepler
satellite will provide a unique opportunity to sound the stellar cycles of many
solar-type stars using asteroseismology. This can be achieved by studying
periodic changes in the amplitudes and frequencies of the oscillation modes
observed in these stars. By comparing these measurements with conventional
ground-based chromospheric activity indices, we can improve our understanding
of the relationship between chromospheric changes and those taking place deep
in the interior throughout the stellar activity cycle. In addition,
asteroseismic measurements of the convection zone depth and differential
rotation may help us determine whether stellar cycles are driven at the top or
at the base of the convection zone. In this paper, we analyze the precision
that will be possible using Kepler to measure stellar cycles, convection zone
depths, and differential rotation. Based on this analysis, we describe a
strategy for selecting specific targets to be observed by the Kepler
Asteroseismic Investigation for the full length of the mission, to optimize
their suitability for probing stellar cycles in a wide variety of solar-type
stars.Comment: accepted for publication in MNRA
An Introduction to Data Analysis in Asteroseismology
A practical guide is presented to some of the main data analysis concepts and
techniques employed contemporarily in the asteroseismic study of stars
exhibiting solar-like oscillations. The subjects of digital signal processing
and spectral analysis are introduced first. These concern the acquisition of
continuous physical signals to be subsequently digitally analyzed. A number of
specific concepts and techniques relevant to asteroseismology are then
presented as we follow the typical workflow of the data analysis process,
namely, the extraction of global asteroseismic parameters and individual mode
parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Screening and diagnostic assessment of neurodevelopmental disorders in a male prison
Purpose
The purpose of this paper is to identify neurodevelopmental disorders and difficulties (NDD) in a male prison. The study used standardised tools to carry out screening and diagnostic assessment of the attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID).
Design/methodology/approach
The ADHD self-report scale, 20-item autism quotient and the Learning Disability Screening Questionnaire were used to screen 240 male prisoners. Prisoners who screened positive on one or more of these scales or self-reported a diagnosis of ADHD, ASD or ID were further assessed using the diagnostic interview for ADHD in adults, adapted Autism Diagnostic Observation Schedule and the Quick Test.
Findings
Of the 87 prisoners who screened positive for NDD and were further assessed, 70 met the study’s diagnostic criteria for ADHD, ASD or ID. Most of those with NDD (51 per cent) had previously gone unrecognised and a high proportion (51 per cent) were identified through staff- or self-referral to the study.
Originality/value
The study demonstrated that improving awareness and providing access to skilled, standardised assessment within a male prison can result in increased recognition and identification of NDD
Sounding stellar cycles with Kepler - preliminary results from ground-based chromospheric activity measurements
Due to its unique long-term coverage and high photometric precision,
observations from the Kepler asteroseismic investigation will provide us with
the possibility to sound stellar cycles in a number of solar-type stars with
asteroseismology. By comparing these measurements with conventional
ground-based chromospheric activity measurements we might be able to increase
our understanding of the relation between the chromospheric changes and the
changes in the eigenmodes.
In parallel with the Kepler observations we have therefore started a
programme at the Nordic Optical Telescope to observe and monitor chromospheric
activity in the stars that are most likely to be selected for observations for
the whole satellite mission. The ground-based observations presented here can
be used both to guide the selection of the special Kepler targets and as the
first step in a monitoring programme for stellar cycles. Also, the
chromospheric activity measurements obtained from the ground-based observations
can be compared with stellar parameters such as ages and rotation in order to
improve stellar evolution models.Comment: submitted to the proceedings of the IAU symposium No. 264, 200
Evidence of Counter-Streaming Ions near the Inner Pole of the HERMeS Hall Thruster
NASA is continuing the development of a 12.5-kW Hall thruster system to support a phased exploration concept to expand human presence to cis-lunar space and eventually to Mars. The development team is transitioning knowledge gained from the testing of the government-built Technology Development Unit (TDU) to the contractor-built Engineering Test Unit (ETU). A new laser-induced fluorescence diagnostic was developed to obtain data for validating the Hall thruster models and for comparing the behavior of the ETU and TDU. Analysis of TDU LIF data obtained during initial deployment of the diagnostics revealed evidence of two streams of ions moving in opposite directions near the inner front pole. These two streams of ions were found to intersect the downstream surface of the front pole at large oblique angles. This data points to a possible explanation for why the erosion rate of polished pole covers were observed to decrease over the course of several hundred hours of thruster operation
Bayesian Inference from Observations of Solar-Like Oscillations
Stellar oscillations can provide a wealth of information about a star, which
can be extracted from observed time series of the star's brightness or radial
velocity. In this paper we address the question of how to extract as much
information as possible from such a dataset. We have developed a Markov Chain
Monte Carlo (MCMC) code that is able to infer the number of oscillation
frequencies present in the signal and their values (with corresponding
uncertainties), without having to fit the amplitudes and phases. Gaps in the
data do not have any serious consequences for this method; in cases where
severe aliasing exists, any ambiguity in the frequency determinations will be
reflected in the results. It also allows us to infer parameters of the
frequency pattern, such as the large separation Delta nu. We have previously
applied this method to the star nu Indi (Bedding et al 2006), and here we
describe the method fully and apply it to simulated datasets, showing that the
code is able to give correct results even when some of the model assumptions
are violated. In particular, the non-sinusoidal nature of the individual
oscillation modes due to stochastic excitation and damping has no major impact
on the usefulness of our approach.Comment: Accepted for publication in Ap
Determining global parameters of the oscillations of solar-like stars
Helioseismology has enabled us to better understand the solar interior, while
also allowing us to better constrain solar models. But now is a tremendous
epoch for asteroseismology as space missions dedicated to studying stellar
oscillations have been launched within the last years (MOST and CoRoT). CoRoT
has already proved valuable results for many types of stars, while Kepler,
which was launched in March 2009, will provide us with a huge number of seismic
data very soon. This is an opportunity to better constrain stellar models and
to finally understand stellar structure and evolution. The goal of this
research work is to estimate the global parameters of any solar-like
oscillating target in an automatic manner. We want to determine the global
parameters of the acoustic modes (large separation, range of excited pressure
modes, maximum amplitude, and its corresponding frequency), retrieve the
surface rotation period of the star and use these results to estimate the
global parameters of the star (radius and mass).To prepare the analysis of
hundreds of solar-like oscillating stars, we have developed a robust and
automatic pipeline. The pipeline consists of data analysis techniques, such as
Fast Fourier Transform, wavelets, autocorrelation, as well as the application
of minimisation algorithms for stellar-modelling. We apply our pipeline to some
simulated lightcurves from the asteroFLAG team and the Aarhus-asteroFLAG
simulator, and obtain results that are consistent with the input data to the
simulations. Our strategy gives correct results for stars with magnitudes below
11 with only a few 10% of bad determinations among the reliable results. We
then apply the pipeline to the Sun and three CoRoT targets.In particular we
determine the parameters of the Sun, HD49933, HD181906, and HD181420.Comment: 15 pages, 17 figures, accepted for publication in A&
The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes
Microinjection of a bacterially expressed, TRITC labelled fragment of the centrosome-associated protein CP190 of Drosophila melanogaster, into syncytial Drosophila embryos, shows it to associate with the centrosomes during mitosis, and to relocate to chromatin during interphase. Indirect immunofluorescence staining of salivary gland chromosomes of third instar Drosophila larvae, with antibodies specific to CP190, indicate that the protein is associated with a large number of loci on these interphase polytene chromosomes. The 190 kDa CP190 protein is encoded by a 4.1 kb transcript with a single, long open reading frame specifying a polypeptide of 1,096 amino acids, with a molecular mass of 120 kDa, and an isoelectric point of 4.5. The central region of the predicted amino acid sequence of the CP190 protein contains four CysX₂CysX₁₂HisX₄His zinc-finger motifs which are similar to those described for several well characterised DNA binding proteins. The data suggest that the function of CP190 involves cell cycle dependent associations with both the centrosome, and with specific chromosomal loci
- …