1,898 research outputs found

    Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment

    Get PDF
    Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 µs time resolution. Average T_e is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ~22 eV, but a similar increase in T_i is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data

    Flow Dynamics And Plasma Heating Of Spheromaks In SSX

    Get PDF
    We report several new experimental results related to flow dynamics and heating from single dipole-trapped spheromaks and spheromak merging studies at SSX. Single spheromaks (stabilized with a pair of external coils, see Brown, Phys. Plasmas 13 102503 (2006)) and merged FRC-like configurations (see Brown, Phys. Plasmas 13, 056503 (2006)) are trapped in our prolate (R = 0.2 m, L = 0.6 m) copper flux conserver. Local spheromak flow is studied with two Mach probes (r(1) = rho(i) ) calibrated by time-of-flight with a fast set of magnetic probes at the edge of the device. Both Mach probes feature six ion collectors housed in a boron nitride sheath. The larger Mach probe will ultimately be used in the MST reversed field pinch. Line averaged flow is measured by ion Doppler spectroscopy (IDS) at the midplane. The SSX IDS instrument measures with 1 mu s or better time resolution the width and Doppler shift of the C-III impurity (H plasma) 229.7 nm line to determine the temperature and line-averaged flow velocity (see Cothran, RSI 77, 063504 (2006)). We find axial flows up to 100 km/s during formation of the dipole trapped spheromak. Flow returns at the wall to form a large vortex. Recent high-resolution IDS velocity measurements during spheromak merging show bi-directional outflow jets at +/- 40 km/s (nearly the Alfven speed). We also measure T-i \u3e= 80 eV and T-e \u3e= 20 eV during spheromak merging events after all plasma facing surfaces are cleaned with helium glow discharge conditioning. Transient electron heating is inferred from bursts on a four-channel soft x-ray array. The spheromaks are also characterized by a suite of magnetic probe arrays for magnetic structure B(r,t), and interferometry for n(e) . Finally, we are designing a new oblate, trapezoidal flux conserver for FRC studies. Equilibrium and dynamical simulations suggest that a tilt-stable, oblate FRC can be formed by spheromak merging in the new flux conserver

    Sounding stellar cycles with Kepler - I. Strategy for selecting targets

    Full text link
    The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyze the precision that will be possible using Kepler to measure stellar cycles, convection zone depths, and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.Comment: accepted for publication in MNRA

    An Introduction to Data Analysis in Asteroseismology

    Full text link
    A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Screening and diagnostic assessment of neurodevelopmental disorders in a male prison

    Get PDF
    Purpose The purpose of this paper is to identify neurodevelopmental disorders and difficulties (NDD) in a male prison. The study used standardised tools to carry out screening and diagnostic assessment of the attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID). Design/methodology/approach The ADHD self-report scale, 20-item autism quotient and the Learning Disability Screening Questionnaire were used to screen 240 male prisoners. Prisoners who screened positive on one or more of these scales or self-reported a diagnosis of ADHD, ASD or ID were further assessed using the diagnostic interview for ADHD in adults, adapted Autism Diagnostic Observation Schedule and the Quick Test. Findings Of the 87 prisoners who screened positive for NDD and were further assessed, 70 met the study’s diagnostic criteria for ADHD, ASD or ID. Most of those with NDD (51 per cent) had previously gone unrecognised and a high proportion (51 per cent) were identified through staff- or self-referral to the study. Originality/value The study demonstrated that improving awareness and providing access to skilled, standardised assessment within a male prison can result in increased recognition and identification of NDD

    Sounding stellar cycles with Kepler - preliminary results from ground-based chromospheric activity measurements

    Get PDF
    Due to its unique long-term coverage and high photometric precision, observations from the Kepler asteroseismic investigation will provide us with the possibility to sound stellar cycles in a number of solar-type stars with asteroseismology. By comparing these measurements with conventional ground-based chromospheric activity measurements we might be able to increase our understanding of the relation between the chromospheric changes and the changes in the eigenmodes. In parallel with the Kepler observations we have therefore started a programme at the Nordic Optical Telescope to observe and monitor chromospheric activity in the stars that are most likely to be selected for observations for the whole satellite mission. The ground-based observations presented here can be used both to guide the selection of the special Kepler targets and as the first step in a monitoring programme for stellar cycles. Also, the chromospheric activity measurements obtained from the ground-based observations can be compared with stellar parameters such as ages and rotation in order to improve stellar evolution models.Comment: submitted to the proceedings of the IAU symposium No. 264, 200

    Evidence of Counter-Streaming Ions near the Inner Pole of the HERMeS Hall Thruster

    Get PDF
    NASA is continuing the development of a 12.5-kW Hall thruster system to support a phased exploration concept to expand human presence to cis-lunar space and eventually to Mars. The development team is transitioning knowledge gained from the testing of the government-built Technology Development Unit (TDU) to the contractor-built Engineering Test Unit (ETU). A new laser-induced fluorescence diagnostic was developed to obtain data for validating the Hall thruster models and for comparing the behavior of the ETU and TDU. Analysis of TDU LIF data obtained during initial deployment of the diagnostics revealed evidence of two streams of ions moving in opposite directions near the inner front pole. These two streams of ions were found to intersect the downstream surface of the front pole at large oblique angles. This data points to a possible explanation for why the erosion rate of polished pole covers were observed to decrease over the course of several hundred hours of thruster operation

    Bayesian Inference from Observations of Solar-Like Oscillations

    Full text link
    Stellar oscillations can provide a wealth of information about a star, which can be extracted from observed time series of the star's brightness or radial velocity. In this paper we address the question of how to extract as much information as possible from such a dataset. We have developed a Markov Chain Monte Carlo (MCMC) code that is able to infer the number of oscillation frequencies present in the signal and their values (with corresponding uncertainties), without having to fit the amplitudes and phases. Gaps in the data do not have any serious consequences for this method; in cases where severe aliasing exists, any ambiguity in the frequency determinations will be reflected in the results. It also allows us to infer parameters of the frequency pattern, such as the large separation Delta nu. We have previously applied this method to the star nu Indi (Bedding et al 2006), and here we describe the method fully and apply it to simulated datasets, showing that the code is able to give correct results even when some of the model assumptions are violated. In particular, the non-sinusoidal nature of the individual oscillation modes due to stochastic excitation and damping has no major impact on the usefulness of our approach.Comment: Accepted for publication in Ap

    Determining global parameters of the oscillations of solar-like stars

    Full text link
    Helioseismology has enabled us to better understand the solar interior, while also allowing us to better constrain solar models. But now is a tremendous epoch for asteroseismology as space missions dedicated to studying stellar oscillations have been launched within the last years (MOST and CoRoT). CoRoT has already proved valuable results for many types of stars, while Kepler, which was launched in March 2009, will provide us with a huge number of seismic data very soon. This is an opportunity to better constrain stellar models and to finally understand stellar structure and evolution. The goal of this research work is to estimate the global parameters of any solar-like oscillating target in an automatic manner. We want to determine the global parameters of the acoustic modes (large separation, range of excited pressure modes, maximum amplitude, and its corresponding frequency), retrieve the surface rotation period of the star and use these results to estimate the global parameters of the star (radius and mass).To prepare the analysis of hundreds of solar-like oscillating stars, we have developed a robust and automatic pipeline. The pipeline consists of data analysis techniques, such as Fast Fourier Transform, wavelets, autocorrelation, as well as the application of minimisation algorithms for stellar-modelling. We apply our pipeline to some simulated lightcurves from the asteroFLAG team and the Aarhus-asteroFLAG simulator, and obtain results that are consistent with the input data to the simulations. Our strategy gives correct results for stars with magnitudes below 11 with only a few 10% of bad determinations among the reliable results. We then apply the pipeline to the Sun and three CoRoT targets.In particular we determine the parameters of the Sun, HD49933, HD181906, and HD181420.Comment: 15 pages, 17 figures, accepted for publication in A&

    The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes

    Get PDF
    Microinjection of a bacterially expressed, TRITC labelled fragment of the centrosome-associated protein CP190 of Drosophila melanogaster, into syncytial Drosophila embryos, shows it to associate with the centrosomes during mitosis, and to relocate to chromatin during interphase. Indirect immunofluorescence staining of salivary gland chromosomes of third instar Drosophila larvae, with antibodies specific to CP190, indicate that the protein is associated with a large number of loci on these interphase polytene chromosomes. The 190 kDa CP190 protein is encoded by a 4.1 kb transcript with a single, long open reading frame specifying a polypeptide of 1,096 amino acids, with a molecular mass of 120 kDa, and an isoelectric point of 4.5. The central region of the predicted amino acid sequence of the CP190 protein contains four CysX₂CysX₁₂HisX₄His zinc-finger motifs which are similar to those described for several well characterised DNA binding proteins. The data suggest that the function of CP190 involves cell cycle dependent associations with both the centrosome, and with specific chromosomal loci
    corecore