1,403 research outputs found

    The Collection and Distribution of Statistical Information by Trade Associations

    Get PDF

    Sounding stellar cycles with Kepler - II. Ground-based observations

    Full text link
    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from Kepler caused by starspots, and asteroseismic determinations of stellar ages, to test relations between between age, rotation and activity.Comment: Accepted for publication in MNRA

    Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    Full text link
    Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. We aim to understand the statistical distribution of the frequencies of maximum oscillation power (nu_max) in red giants and to search for a possible correlation between nu_max and the large separation (delta_nu). The nu_max distribution shows a pronounced peak between 20 - 40 microHz. For about half of the stars we obtain delta_nu with at least two methods. The correlation between nu_max and delta_nu follows the same scaling relation as inferred for solar-like stars. The shape of the nu_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between delta_nu and nu_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution.Comment: Accepted for publication in Astronomy and Astrophysics (CoRoT special issue), 5 pages, 7 figures and 1 tabl

    Amplitudes and lifetimes of solar-like oscillations observed by CoRoT* Red-giant versus main-sequence stars

    Get PDF
    Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {\mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.Comment: Accepted in A&A on 2011 February 8th, now includes corrections (results now more precise on \Gamma and A_max in Section 4.3 and 4.4, fig. 7 corrected consequently

    Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations

    Get PDF
    Context: The Kepler space mission is reaching continuous observing times long enough to start studying the fine structure of the observed p-mode spectra. Aims: In this paper, we aim to study the signature of stellar evolution on the radial and p-dominated l=2 modes in an ensemble of red giants that show solar-type oscillations. Results: We find that the phase shift of the central radial mode (eps_c) is significantly different for red giants at a given large frequency separation (Dnu_c) but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Dnu_c, eps_c) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between eps_c and Dnu_c for RGB stars and no indication that eps_c depends on other properties of these stars. It appears that the difference in eps_c between the two populations becomes if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, Dnu to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial modes for a sequence of RG models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Dnu is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Dnu. Finally, we investigate the signature of the evolutionary stage on the small frequency separation and quantify the mass dependency of this seismic parameter.Comment: 12 pages, 9 figures, accepted for publication in A&

    Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273

    Get PDF
    The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the Sun. We aimed mainly at extracting estimates of p-mode frequencies - as well as of other individual mode parameters - from the power spectra of the light curves of both stars, thus providing scope for a full seismic characterization. The light curves were corrected for instrumental effects in a manner independent of the Kepler Science Pipeline. Estimation of individual mode parameters was based both on the maximization of the likelihood of a model describing the power spectrum and on a classic prewhitening method. Finally, we employed a procedure for selecting frequency lists to be used in stellar modeling. A total of 30 and 21 modes of degree l=0,1,2 - spanning at least eight radial orders - have been identified for KIC 10273246 and KIC 10920273, respectively. Two avoided crossings (l=1 ridge) have been identified for KIC 10273246, whereas one avoided crossing plus another likely one have been identified for KIC 10920273. Good agreement is found between observed and predicted mode amplitudes for the F-type star KIC 10273246, based on a revised scaling relation. Estimates are given of the rotational periods, the parameters describing stellar granulation and the global asteroseismic parameters Δν\Delta\nu and νmax\nu_{\rm{max}}.Comment: 15 pages, 15 figures, to be published in Astronomy & Astrophysic

    Solar-like oscillations with low amplitude in the CoRoT target HD 181906

    Full text link
    Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    Solar-like oscillations in KIC11395018 and KIC11234888 from 8 months of Kepler data

    Full text link
    We analyze the photometric short-cadence data obtained with the Kepler Mission during the first eight months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888 respectively, the latter having a lower signal-to-noise ratio compared to the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope and the average linewidth of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the signal-to-noise ratios of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass and radius are obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low signal-to-noise ratio for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.Comment: 39 pages, 9 figures. Accepted for publication in Ap
    corecore