114 research outputs found

    Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide

    Get PDF
    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail

    Using street view imagery for 3-D survey of rock slope failures

    Get PDF
    We discuss here different challenges and limitations of surveying rock slope failures using 3-D reconstruction from image sets acquired from street view imagery (SVI). We show how rock slope surveying can be performed using two or more image sets using online imagery with photographs from the same site but acquired at different instances. Three sites in the French alps were selected as pilot study areas: (1) a cliff beside a road where a protective wall collapsed, consisting of two image sets (60 and 50 images in each set) captured within a 6-year time frame; (2) a large-scale active landslide located on a slope at 250m from the road, using seven image sets (50 to 80 images per set) from five different time periods with three image sets for one period; (3) a cliff over a tunnel which has collapsed, using two image sets captured in a 4-year time frame. The analysis include the use of different structure from motion (SfM) programs and a comparison between the extracted photogrammetric point clouds and a lidar-derived mesh that was used as a ground truth. Results show that both landslide deformation and estimation of fallen volumes were clearly identified in the different point clouds. Results are site- and software-dependent, as a function of the image set and number of images, with model accuracies ranging between 0.2 and 3.8m in the best and worst scenario, respectively. Although some limitations derived from the generation of 3-D models from SVI were observed, this approach allowed us to obtain preliminary 3-D models of an area without on-field images, allowing extraction of the pre-failure topography that would not be available otherwise

    An integrated analysis of surface velocities induced by rainfall in the Séchilienne landslide (Western Alps, France)

    No full text
    International audienceAn integrated analysis on the relationship between rainfall and displacement in the most active area of the Séchilienne unstable slope was performed. This study combines several techniques and models to adequately reproduce the landslide movement induced by the rainfall. The analysis of available time series shows a long term trend and seasonal variations in the displacement, respectively independent and synchronous to precipitations. In particular wavelet analysis highlights that the movement is rather linked to groundwater recharge than to precipitation (rainfall + snowfall), involving then the importance of groundwater process in the area. A first and simple relationship between the water input and the fluctuations of displacements apart from the general trend is shown using a tank model. Moreover, a seasonal analysis of this relationship was performed, showing that displacement rate follows the behavior of the hydrological cycle. Two different models were applied to the long temporal series of extensometric and precipitation data: the FLAME model, from BRGM and the FORESEES model, from Univ. Lausanne. These tools are based on a combined statistical-mechanical approach to predict changes in landslide displacement rates from observed changes in precipitation amounts. The forecasting tool FLAME associates 1) a statistical impulse response (IR) model to simulate the changes in landslide rates by computing a transfer function between the rainfall and the displacements, and 2) a 1D mechanical (ME) model (e.g. visco-plastic rheology), in order to take into account changes in pore water pressures. The performance of different combinations of models was evaluated against observed displacement rates at the selected pilot study area. Our results indicate that both models are able to reproduce, with a high degree of accuracy, the observed displacement pattern in the general kinematic regime. Finally the variability of the results, depending in particular on the input data, is discussed

    Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for \u3b2-Thalassemia

    Get PDF
    Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for \u3b2-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of \u3b2-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for \u3b2-thalassemia

    Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons

    Get PDF
    The impact of internal and barotropic tides on the vertical and horizontal temperature structure off the Amazon River was investigated during two highly contrasted seasons (AMJ: April–May–June; ASO: August–September–October) over a 3-year period from 2013 to 2015. Twin regional simulations, with and without tides, were used to highlight the general effect of tides. The findings reveal that tides have a cooling effect on the ocean from the surface (∼ 0.3 ∘C) to above the thermocline (∼ 1.2 ∘C), while warming it up below the thermocline (∼ 1.2 ∘C). The heat budget analysis indicates that the vertical mixing is the dominant process driving temperature variations within the mixed layer, while it is associated with both horizontal and vertical advection to explain temperature variations below. The increased mixing in the simulations including tides is attributed to breaking of internal tides (ITs) on their generation sites over the shelf break and offshore along their propagation pathways. Over the shelf, mixing is driven by the dissipation of the barotropic tides. In addition, the vertical terms of the heat budget equation exhibit wavelength patterns typical of mode-1 IT. The study highlights the key role of tides and particularly how IT-related vertical mixing shapes the ocean temperature off the Amazon. Furthermore, we found that tides impact the interactions between the upper ocean interface and the overlying atmosphere. They contribute significantly to increasing the net heat flux between the atmosphere and the ocean, with a notable seasonal variation from 33.2 % in AMJ to 7.4 % in ASO seasons. This emphasizes the critical role of tidal dynamics in understanding regional-scale climate.</p

    COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby.

    Get PDF
    BACKGROUND: Two common single nucleotide polymorphisms within the COL5A1 gene (SNPs; rs12722 C/T and rs3196378 C/A) have previously been associated with tendon and ligament pathologies. Given the high incidence of tendon and ligament injuries in elite rugby athletes, we hypothesised that both SNPs would be associated with career success. RESULTS: In 1105 participants (RugbyGene project), comprising 460 elite rugby union (RU), 88 elite rugby league athletes and 565 non-athlete controls, DNA was collected and genotyped for the COL5A1 rs12722 and rs3196378 variants using real-time PCR. For rs12722, the injury-protective CC genotype and C allele were more common in all athletes (21% and 47%, respectively) and RU athletes (22% and 48%) than in controls (16% and 41%, P ≤ 0.01). For rs3196378, the CC genotype and C allele were overrepresented in all athletes (23% and 48%) and RU athletes (24% and 49%) compared with controls (16% and 41%, P ≤ 0.02). The CC genotype in particular was overrepresented in the back and centres (24%) compared with controls, with more than twice the odds (OR = 2.25, P = 0.006) of possessing the injury-protective CC genotype. Furthermore, when considering both SNPs simultaneously, the CC-CC SNP-SNP combination and C-C inferred allele combination were higher in all the athlete groups (≥18% and ≥43%) compared with controls (13% and 40%; P = 0.01). However, no genotype differences were identified for either SNP when RU playing positions were compared directly with each other. CONCLUSION: It appears that the C alleles, CC genotypes and resulting combinations of both rs12722 and rs3196378 are beneficial for rugby athletes to achieve elite status and carriage of these variants may impart an inherited resistance against soft tissue injury, despite exposure to the high-risk environment of elite rugby. These data have implications for the management of inter-individual differences in injury risk amongst elite athletes

    Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    Get PDF
    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases
    • …
    corecore