198 research outputs found

    Relationships between yield, rotation length, and abundance of Olpidium brassicae and Pyrenochaeta sp. in the rhizosphere of oilseed rape

    Get PDF
    Oilseed rape yields in the UK have been found to decline with more frequent cropping in a rotation. Previously, two soil-borne organisms (Olpidium brassicae (Chytridiomycota) and Pyrenochaeta sp. (Ascomycota)) were identified as having high relative abundance in rhizosphere fungal communities associated with oilseed rape crops where yield decline had been recorded. In order to better understand these organisms' association with the oilseed rape crop, the current study was designed to investigate the fungal rhizosphere microbiome of oilseed rape grown in a wide range of rotational frequencies. Samples collected from a long-term rotation trial site at three time points through the growing season were used to determine fungal community composition, and quantification of O. brassicae and Pyrenochatea sp. Analyses showed the combined root and rhizosphere fungal communities were similar across all oilseed rape rotations, largely due to the high relative abundance of O. brassicae, irrespective of cropping frequency. Olpidium brassicae abundance peaked in March (mid-season) in all rotations, before declining in abundance by June (pre-harvest). In contrast, Pyrenochaeta sp. increased in abundance throughout the season, with significantly higher levels reached in June than earlier in the season. Pyrenochaeta sp. had a greater abundance early in the season (January) in continuously grown and alternate oilseed rape (grown one year in two) than in rotations with longer gaps between oilseed rape crops This study concludes that O. brassicae cannot be solely associated with yield decline of OSR observed in short rotation cropping due to its prevalence in the extended rotations examined (up to 6-year gap)

    Weber and church governance: religious practice and economic activity

    Get PDF
    The debate about the relationship between religion and economic activity in the wake of Weber has been cast largely in terms of belief and values. This article suggests an alternative focus on practice. It argues that taken for granted practices of church governance formed to-hand resources for the organization of economic activity. The argument is developed through an examination of the historical development of church governance practices in the Presbyterian Church of Scotland, with particular emphasis on the way in which theological belief gave rise to practices of accountability and record keeping. In turn such practices contributed to a ‘culture of organization’ which had implications for economic activity. A focus on governance practices can help to illuminate enduring patterns of difference in the organization of economic activity

    Identification of yrast states in 187Pb

    Get PDF
    g -ray spectroscopy of the high-spin states of the neutron-deficient nucleus 187Pb has been conducted with the 155Gd(36Ar,4n) reaction. A cascade of three transitions was deduced from g -g coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these g rays were positively identified with 187Pb by recoil-g coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in 187Pb is associated with the sequence of three E2 transitions from the yrast 25/2 + level to a low-lying 13/2 + isomer. The variation of excitation energy with mass number of the levels concerned suggests that their structure can be associated with weak coupling of an odd i13/2 neutron to states in the spherical well. However, the possibility that they are influenced by mixing with states in the prolate-deformed well cannot be discounted

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF
    corecore