121 research outputs found

    Predicting the breaking onset of surface water waves

    Get PDF
    Why do ocean waves break? Understanding this important and obvious property of the ocean surface has been elusive for decades. This paper investigates causes which lead deep-water two-dimensional initially monochromatic waves to break. Individual wave steepness is found to be the single parameter which determines whether the wave will break immediately, never break or take a finite number of wave lengths to break. The breaking will occur once the wave reaches the Stokes limiting steepness. The breaking probability and the location of breaking onset can be predicted, properties of incipient breakers measured. Potential applications to field conditions are discussed

    Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation

    Full text link
    New parameterizations for the spectra dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observation of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is non-zero only when a non-dimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short wave dissipation due to long wave breaking is introduced to represent the dissipation of short waves due to longer breaking waves. Several degrees of freedom are introduced in the wave breaking and the wind-wave generation term of Janssen (J. Phys. Oceanogr. 1991). These parameterizations are combined and calibrated with the Discrete Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from gentle swells to major hurricanes, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but the parameterizations yield the best overall results to date. Perspectives for further improvement are also given.Comment: revised version for Journal of Physical Oceanograph

    Surface gravity waves in deep fluid at vertical shear flows

    Full text link
    Special features of surface gravity waves in deep fluid flow with constant vertical shear of velocity is studied. It is found that the mean flow velocity shear leads to non-trivial modification of surface gravity wave modes dispersive characteristics. Moreover, the shear induces generation of surface gravity waves by internal vortex mode perturbations. The performed analytical and numerical study provides, that surface gravity waves are effectively generated by the internal perturbations at high shear rates. The generation is different for the waves propagating in the different directions. Generation of surface gravity waves propagating along the main flow considerably exceeds the generation of surface gravity waves in the opposite direction for relatively small shear rates, whereas the later wave is generated more effectively for the high shear rates. From the mathematical point of view the wave generation is caused by non self-adjointness of the linear operators that describe the shear flow.Comment: JETP, accepte

    The effect of breaking waves on a coupled model of wind and ocean surface waves. Part I : mature seas

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2145–2163, doi:10.1175/2008JPO3961.1.This is the first of a two-part investigation of a coupled wind and wave model that includes the enhanced form drag of breaking waves. In Part I here the model is developed and applied to mature seas. Part II explores the solutions in a wide range of wind and wave conditions, including growing seas. Breaking and nonbreaking waves induce air-side fluxes of momentum and energy above the air–sea interface. By balancing air-side momentum and energy and by conserving wave energy, coupled nonlinear advance–delay differential equations are derived, which govern simultaneously the wave and wind field. The system of equations is closed by introducing a relation between the wave height spectrum and wave dissipation due to breaking. The wave dissipation is proportional to nonlinear wave interactions, if the wave curvature spectrum is below the “threshold saturation level.” Above this threshold the wave dissipation rapidly increases so that the wave height spectrum is limited. The coupled model is applied to mature wind-driven seas for which the wind forcing only occurs in the equilibrium range away from the spectral peak. Modeled wave height curvature spectra as functions of wavenumber k are consistent with observations and transition from k1/2 at low wavenumbers to k0 at high wavenumbers. Breaking waves affect only weakly the wave height spectrum. Furthermore, the wind input to waves is dominated by nonbreaking waves closer to the spectral peak. Shorter breaking waves, however, can support a significant fraction, which increases with wind speed, of the total air–sea momentum flux.This work was supported by the U.S. National Science Foundation (Grant OCE-0526177) and the U.S. Office of Naval Research (Grant N00014-06-10729)

    Numerical modeling of surface wave development under the action of wind

    No full text
    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge–Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy
    • …
    corecore